首页|基于机器学习转移性鼻咽癌关键特征基因的筛选及其免疫细胞浸润分析

基于机器学习转移性鼻咽癌关键特征基因的筛选及其免疫细胞浸润分析

扫码查看
目的 利用机器学习算法筛选转移性鼻咽癌(mNPC)的关键特征基因,并分析其肿瘤微环境中免疫细胞浸润情况。方法 首先,通过 GEO 数据库下载训练集 GSE103611 数据,并对数据进行差异表达基因(DEGs)筛选、基因本体论(GO)、京都基因与基因组百科全书(KEGG)以及免疫细胞浸润分析。其次,通过最小绝对收缩和选择器操作(LASSO)回归筛选DEGs中的预测基因,并利用预测基因的表达水平和受试者工作特征曲线(ROC)筛选特征基因。再次,进一步分析特征基因与免疫细胞的相关性,从而判断关键特征基因。最后,利用反向验证集GSE1245 数据,对关键特征基因的表达水平和ROC进行验证。结果 共获得 136 个DEGs,其KEGG主要富集在细胞色素P450、肿瘤坏死因子(TNF)信号通路、朊病毒疾病以及EB病毒感染等通路。GO主要富集在肽基酪氨酸磷酸化修饰、病毒基因表达以及B细胞和白细胞活化的负调节过程。22 种免疫细胞在鼻咽癌(NPC)和mNPC中的浸润程度差异不明显。LASSO回归最终得到 2 个mNPC的关键特征基因无精子蛋白 1 缺失(DAZ1)和酵母氨酸脱氢酶(SCCPDH),且两者与mNPC微环境中的免疫细胞显著相关(P<0。05)。在反向验证数据集中,DAZ1 和SCCPDH在非鼻咽癌(nNPC)和 NPC 组间的差异表达不显著(P>0。05),且两者 ROC 的曲线下面积(AUC)值均<0。6。结论 DAZ1 和SCCPDH是mNPC的关键特征基因,可作为mNPC及其免疫治疗的重要标志物。
Screen of key characteristic genes and analysis of immune cell infiltration in metastatic nasopharyngeal carcinoma base on machine learning
Objective To screen the key characteristic genes of metastatic nasopharyngeal carcinoma(mNPC)and analyze the immune cell infiltration in tumor microenvironment using machine learning algorithm.Methods Firstly,the training set GSE103611 was downloaded from the GEO database,and the data were subjected to differential expression gene(DEGs)screening,Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genome(KEGG)and immune cell infiltration analysis.Second,the predicted genes in DEGs were screened by least absolute shrinkage and selector operation(LASSO)regression,and the characteristic genes were screened by using the expression level of the predicted genes and receiver operating characteristic(ROC).Third,the correlation between characteristic genes and immune cells was further analyzed to determine the key characteristic genes.Finally,the expression levels of key characteristic genes and ROC were verified using the reverse validation set GSE1245 data.Results A total of 136 DEGs were obtained,and their KEGG were mainly enriched in cytochrome P450,tumor necrosis factor(TNF)signaling pathway,prion disease,EB virus infection,and other pathways.GO was mainly enriched in the negative regulatory processes of peptide-based tyrosine phosphorylation modification,viral gene expression,and B cell and leukocyte activation.The difference in the degree of infiltration of the 22 immune cells in nasopharyngeal carcinoma(NPC)and mNPC was not significant.Two key characteristic genes(DAZ1 and SCCPDH)of mNPC were finally obtained by LASSO regression,and they were significantly correlated with immune cells in the mNPC microenvironment(P<0.05).In the reverse validation data set,the differential expressions of DAZ1 and SCCPDH between non-NPC(nNPC)and NPC groups were not significant(P>0.05),and the AUC values of ROC of both were less than 0.6.Conclusion DAZ1 and SCCPDH are the key characteristic genes of mNPC and can be used as important markers for mNPC and immunotherapy.

Metastatic nasopharyngeal carcinomaImmune cell infiltrationBioinformaticsMachine learning

陆进、陈云帆、张浩轩、黄学应

展开 >

安徽医科大学人体解剖学教研室,合肥 230032

蚌埠医学院人体解剖学教研室,安徽 蚌埠 233030

数字医学与智慧健康安徽省重点实验室,安徽 蚌埠 233030

转移性鼻咽癌 免疫细胞浸润 生物信息学 机器学习

安徽省教育厅自然科学研究重点项目蚌埠医学院厅级重点实验室开放基金

KJ2020A0553AHCM2022Z004

2024

解剖学报
中国解剖学会

解剖学报

CSTPCD
影响因子:0.462
ISSN:0529-1356
年,卷(期):2024.55(3)
  • 9