首页|数据资产信息披露对制造企业债务融资成本的影响研究——基于年报"管理层讨论与分析"文本

数据资产信息披露对制造企业债务融资成本的影响研究——基于年报"管理层讨论与分析"文本

扫码查看
以2010-2022年中国A股上市2702家制造企业为样本,运用Word2Vec神经网络模型构建文本词典获取数据资产信息披露指标,探究数据资产信息披露与制造企业债务融资成本的关系.研究发现,数据资产信息披露程度越高,制造企业债务融资成本越低;进一步研究发现,数据资产信息披露能通过提高分析师盈余预测准确率和降低债务违约风险两条路径降低制造企业债务融资成本,并且数据资产信息披露在非国有制造企业和治理水平较高的制造企业中促进作用更加显著.因此,应持续完善上市公司数据资产信息披露准则,缓解企业与债权人之间的信息不对称,进而优化企业的金融资源配置能力.
Taking 2702 manufacturing companies listed on China's A-share market from 2010 to 2022 as a sample,the Word2Vec neural network model was used to build a text dictionary to obtain data asset information disclosure indicators,and explore the relationship between data asset information disclosure and debt financing costs of manufacturing companies.The study found that the higher the degree of data asset information disclosure,the lower the debt financing costs of manufacturing companies;further research found that data asset information disclosure reduces the debt financing costs of manufacturing companies through two paths:improving the accuracy of analysts'earnings forecasts and reducing debt default risks.Moreover,the promotion effect of data asset information disclosure is more significant in non-state-owned manufacturing companies and manufacturing companies with higher governance levels.Therefore,the information disclosure standards for data assets of listed companies should continue to be improved to alleviate the information asymmetry between companies and creditors,thereby optimizing the company's financial resource allocation capabilities.

manufacturing enterprisesdata assetsinformation disclosuredebt financing costWord2Vec neural network

王文彦、张红梅、张目

展开 >

贵州财经大学 大数据应用与经济学院,贵州 贵阳 550025

贵州科技创新创业投资研究院,贵州 贵阳 550025

制造企业 数据资产 信息披露 债务融资成本 Word2Vec神经网络

国家自然科学基金贵州财经大学校级重点培育学科急需学科方向专项

718610032020ZJXK20

2024

金融理论与实践
中国人民银行郑州中心支行 河南省金融学会

金融理论与实践

CSTPCDCHSSCD北大核心
影响因子:0.765
ISSN:1003-4625
年,卷(期):2024.(2)
  • 68