首页|脓毒症患者肝损伤风险预测模型的构建和验证

脓毒症患者肝损伤风险预测模型的构建和验证

扫码查看
目的:研究脓毒症患者发生脓毒症相关肝损伤(sepsis-associated liver injury,SALI)风险的影响因素,建立并验证预测患者发生SALI风险的模型.方法:选择 2019 年 1 月至 2022 年 1 月于南京医科大学附属淮安第一医院重症医学科(ICU)收治的脓毒症患者 415 例,根据临床诊断结果分为SALI组(n=97)和非SALI组(n=318),收集患者基本信息和临床资料,采用最小绝对收缩和选择算子(LASSO)回归行单因素筛选;然后采用多因素Logistic回归进一步筛选,并以此构建列线图模型;采用bootstrap法对模型进行内部验证以评估列线图性能,包括区分度、准确度和临床适用度.结果:LASSO回归筛选出 9 个变量;多因素Logistic回归进一步显示总胆红素、丙氨酸氨基转移酶、γ-谷氨酰基转肽酶、机械通气、肾功能衰竭、国际标准化比值和急性呼吸衰竭为SALI的独立危险因素;以此构建的模型行内部验证显示ROC曲线下面积为 0.823(95%CI:0.773~0.873);同时模型表现出理想的准确度(P>0.05);决策曲线分析结果显示,该预测模型预测脓毒症患者发生SALI风险在 5%~100%阈值范围内产生净收益.结论:总胆红素、丙氨酸氨基转移酶、γ-谷氨酰基转肽酶、机械通气、肾功能衰竭、国际标准化比值和急性呼吸衰竭是影响脓毒症患者发生SALI的独立危险因素,基于此所建立的列线图模型具有较好的预测价值.
Construction and validation of liver injury risk prediction model in patients with sepsis
Objective:To investigate the influencing factors of the risk of sepsis-associated liver injury(SALI)in patients with sepsis,and establish and verify a model for predicting the risk of SALI.Methods:A total of 415 patients with sepsis admitted to the Intensive Care Unit(ICU),the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University,from January 2019 to January 2022 were enrolled and divided into SALI group(n=97)and non-SALI group(n=318),according to clinical diagnosis.Basic information and clinical data of patients were collected.Least absolute shrinkage and selection operator(LASSO)regression was used for univariate screening.Then,multivariate Logistic regression was used to further select the risk factors and construct the model based on the nomogram.The performance of the nomogram,including differentiation,accuracy and clinical utility,was evaluated through internal validation by using bootstrap method.Results:Nine variables were selected by LASSO regression for multivariate analysis.Multivariate Logistic regression further showed that total bilirubin,alanine aminotransferase,γ-glutamyl transpeptidase,mechanical ventilation,renal failure,international normalized ratio,and acute respiratory failure were independent risk factors for SALI.The internal validation of the constructed model showed that the area under the ROC curve was 0.823(95%CI:0.773-0.873),and the model demonstrated satisfactory accuracy(P>0.05).Decision curve analysis indicated that the prediction model could generate a net benefit within the threshold range of 5%to 100%for predicting the risk of developing SALI in sepsis patients.Conclusion:Total bilirubin,alanine aminotransferase,γ-glutamyl transpeptidase,mechanical ventilation,renal failure,international normalized ratio,and acute respiratory failure were independent risk factors for SALI in patients with sepsis,and the nomogram model established based on above factors had good predictive value.

sepsissepsis-associated liver injuryriskscreeningpredictionnomogram

陈闪闪、嵇金陵、潘胜男、王琼、李畅、姜玉章、时汀

展开 >

南京医科大学附属淮安第一医院 医学检验中心,江苏 淮安 223300

南京医科大学附属淮安第一医院 肝胆胰外科,江苏 淮安 223300

脓毒症 脓毒症相关肝损伤 风险 筛选 预测 列线图

2025

江苏大学学报(医学版)
江苏大学

江苏大学学报(医学版)

影响因子:0.535
ISSN:1671-7783
年,卷(期):2025.35(1)