首页|基于动态特征选择和长短期记忆模型的气温预报方法

基于动态特征选择和长短期记忆模型的气温预报方法

扫码查看
传统的气象多要素预测方法,主要问题是无法表达气象数据的时间相关性,且容易出现维度灾难,引起计算效率低下.本文提出基于动态相关性的特征选择和长短期记忆模型相结合的预测方法,利用动态相关性选择出与气温高度相关的特征,在此基础上利用长短期记忆模型建立气温预测模型.该方法可以有效地降低网络的复杂度,在预测具有时间相关性的气象要素时具有较高的预测准确率和普适性.
Temperature prediction method based on dynamic feature selection and LSTM model

feature selectiondynamic correlationlong short-term memory(LSTM)modeltime sequences

韩立、李芳

展开 >

大连东软信息学院软件与大数据技术系,辽宁 大连 116023

大连交通大学档案馆

特征选择 动态相关性 长短期记忆模型 时间序列

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(10)
  • 10