首页|基于改进YOLOv3算法的线束端子缺陷检测方法

基于改进YOLOv3算法的线束端子缺陷检测方法

扫码查看
研发了一套基于深度学习的汽车线束缺陷检测系统.基于YOLOv3改进的Pr-YOLOv3算法来检测线束端子接插件缺陷,将主干提取网络替换成ResNet50,提高特征提取能力,减少参数量,吸收多尺度预测方式和特征融合方面的优势,将主干提取网络与FPN特征金字塔进行对接,丰富了特征的表达能力.用改进的YOLOv3模型进行训练,准确率可达98.61%,Recall指数可达98.6%.
Defect detection method of wire harness terminal based on improved YOLOv3
A deep-learning based automotive wiring harnesses defect detection system is developed.The Pr-YOLOv3 algorithm based on improved YOLOv3 is used to detect defects in wiring harness terminal connectors,and the backbone extraction network is replaced with ResNet50,which improves the feature extraction capability and reduces the number of parameters.Drawing on the advantages in multi-scale prediction methods and feature fusion,the backbone extraction network is interfaced with the FPN feature pyramid,which enriches the feature expression ability.Trained with the improved YOLOv3 model,the accuracy can reach 98.61%and the Recall index can reach 98.6%.

radiographic non-destructive testingwire harness terminal defect detectionconvolution neural networkYOLOv3

程晓颖、李海生、吕旭波

展开 >

电子科技大学机械与电气工程学院,四川 成都 611731

浙江理工大学机械工程学院

浙江新宝汽车电器有限公司

射线无损检测 线束端子缺陷检测 卷积神经网络 YOLOv3

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 3