首页|基于YOLOv5算法的满文不定长字元数据集制作方法研究

基于YOLOv5算法的满文不定长字元数据集制作方法研究

扫码查看
在进行满文识别时需要用到大量的满文数据,但目前还没有满文不定长字元数据集.本文提出一种基于YOLOv5的满文不定长字元数据集制作方法,用于后续的训练和研究.与传统切割方法相比,只需提供待检测图片即可.通过对基于YOLOv5的数据集制作流程的改进,去除原YOLOv5实验中对图像进行翻转和随机裁剪部分,并且将原YOLOv5的损失函数替换为EIoU,添加了注意力机制SE模块.实验结果表明:与原始的 YOLOv5网络相比,其精度和召回率分别提高到98.95%和98.83%,证明了算法的实用性和高效性.
Research on the method of making Manchu indeterminate length character dataset based on YOLOv5
A large amount of Manchu data is needed in Manchu recognition,but there is currently no Manchu indeterminate length character dataset available.To solve this problem,a method of making Manchu indeterminate length character dataset based on YOLOv5 is proposed for subsequent training and research.Compared with traditional cutting methods,only the image to be detected is required.By improving the dataset making process based on YOLOv5,the parts of image flipping and random cropping in the original YOLOv5 experiment are removed.The loss function of the original YOLOv5 is replaced with EIoU,and the attention mechanism SE module is added.The experimental results show that compared with the original YOLOv5 network,its accuracy and recall rate are improved to 98.95%and 98.83%,respectively,which proves the practicability and high efficiency of the algorithm.

YOLOv5EIoUSE moduledataset makingtarget detectionManchu

李昭仪、于淼、于晓鹏

展开 >

吉林师范大学数学与计算机学院,吉林 四平 136000

YOLOv5 EIoU SE模块 数据集制作 目标检测 满文

&&

YDZJ202301ZYTS285

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 7