首页|基于大核注意力循环网络的医学图像超分辨率重建

基于大核注意力循环网络的医学图像超分辨率重建

扫码查看
医学影像在医生的临床诊断中发挥着重要的作用.由于成像原理和设备的限制,很多时候获得的图片成像效果都不理想.将超分辨率技术引入医学图像领域,在超分辨率任务中使用大核分解和注意力机制,可以使卷积神经网络取得类似于基于Transformer方法的效果.于是提出一种基于循环生成对抗网络的医学图像超分辨率方法,使用大核注意力机制来提升成像质量,使用循环生成对抗网络来提升图片的细节恢复的质量和准确性.
Medical image super-resolution reconstruction based on large kernel attention cycle network
Medical imaging plays an important role in the clinical diagnosis of doctors.Due to the limitation of imaging principle and equipment,many times the images obtained are not ideal.Introducing super-resolution technology into the field of medical images and using large kernel decomposition and attention mechanism in super-resolution tasks can make convolutional neural network not inferior to the method based on Transformer.In this paper,a super-resolution method for medical images based on cycle generative adversarial networks is proposed.The large kernel attention mechanism is used to improve the image quality,and the cycle generative adversarial network is used to improve the quality and accuracy of image detail recovery.

large kernel decompositioncycle generative adversarial networkmedical imagessuper-resolution reconstructionattention mechanism

孙乐贤、端木春江

展开 >

浙江师范大学物理与电子信息工程学院,浙江 金华 321004

大核分解 循环生成对抗网络 医学图像 超分辨率重建 注意力机制

浙江省自然科学基金浙江省自然科学基金

LY15F010007Y1110510

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 7