首页|非平衡数据集下基于XGBoost模型的财务舞弊识别研究

非平衡数据集下基于XGBoost模型的财务舞弊识别研究

扫码查看
针对现实中舞弊样本与非舞弊样本存在的数量不平衡情况,通过25个财务指标与2个非财务指标,运用过采样、欠采样技术及XGBoost模型进行财务报表舞弊识别研究.结果表明,SMOTE过采样方法与XGBoost模型的结合在非平衡数据集下具有较好的整体识别效果,对上市公司财务报表舞弊的智能识别有一定参考意义.
Research on financial fraud identification based on XGBoost model in unbalanced datasets
In view of the unbalance in the number of fraud samples and non-fraud samples in reality,a study on financial statement fraud identification is conducted by applying over-sampling,under-sampling techniques and XGBoost model to 25 financial indicators and 2 non-financial indicators.The results show that the combination of SMOTE over-sampling method and XGBoost model has a good overall identification effect in the unbalanced dataset,which has certain reference significance for the intelligent identification of financial statement fraud of listed companies.

unbalanced datasetidentification of financial statement fraudSMOTEXGBoost

王琦、熊莎丽娜、詹柔、张露、杨鑫、张健

展开 >

西南林业大学数理学院,云南 昆明 650224

非平衡数据集 财务报表舞弊识别 SMOTE XGBoost

云南省教育厅科学研究基金云南省高等学校大学生创新创业训练计划项目

2022J0523

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 1
  • 6