首页|基于无锚解耦头的航空图像旋转目标检测方法研究

基于无锚解耦头的航空图像旋转目标检测方法研究

扫码查看
航空图像目标具有面积比例较小、排列密集、倾斜角度任意等特点.为了达到航空图像目标精确检测的要求,改进了特征提取网络,同时使用椭圆中心采样方法,优化标签采样策略以解决采样不足问题.最后使用无锚点解耦合目标检测头将边界框回归任务与目标分类任务分离以提高检测精度.实验表明,所提方法在DOTA和HRSC2016数据集上分别达到了75.2%和89.1%的mAP,满足了精确检测的要求.
Rotating object detection method in aerial images based on anchor-free decoupling head
Aerial image objects have the characteristics of small area ratio,dense arrangement,and arbitrary inclination angle.In order to meet the requirements of accurate detection of aerial image objects,the feature extraction network is improved,and the ellipse center sampling method is used to optimize the label sampling strategy to solve the problem of insufficient sampling.Finally,an anchor-free decoupling object detection head is used to separate the bounding box regression task from the object classification task to improve detection accuracy.Experiments show that the proposed method achieves 75.2%and 89.1%mAP on the DOTA and HRSC2016 datasets,respectively,which meets the requirements of accurate detection.

anchor-freedeep learningellipse center samplingdecoupling detection

康宇哲、冯桂林、张易诚、康逸云、沈炜

展开 >

浙江理工大学信息科学与工程学院,浙江 杭州 310018

浙江省自然资源厅信息中心

浙江理工大学计算机科学与技术学院

无锚点 深度学习 椭圆中心采样 解耦合检测

浙江省自然资源厅信息中心浙江省省级不动产智治应用建设项目

CTZB-2022060384

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 2