首页|改进YOLOv5的遥感图像小目标检测算法

改进YOLOv5的遥感图像小目标检测算法

扫码查看
针对目前主流算法在遥感图像目标检测任务中对于图像中小目标检测效果较差、易产生漏检误检的问题,提出一种改进YOLOv5 的小目标检测算法YOLOv5-FRM.首先在原YOLOv5 骨干网络的最后添加坐标注意力机制Coordinate attention(CA)模块替代原SPP模块,之后提出一种改进多尺度空间净化模块,实现了检测头的添加,并融合进原YOLOv5的颈部网络中.最后引入Copy-reduce-paste数据增强方法提高模型训练效果.实验结果表明,该改进算法有效提升了遥感图像小目标的检测精度,降低了误检率与漏检率.
Improved YOLOv5 for remote sensing image small target detection
An improved YOLOv5 small target detection algorithm,YOLOv5-FRM,is proposed to address the issue of poor detection performance of mainstream algorithms in remote sensing image small target detection.Firstly,a Coordinate Attention(CA)module is added at the end of the original YOLOv5 backbone network to replace the original SPP module.Then,an improved multi-scale spatial purification module is proposed,which implements the addition of detection heads and integrates them into the neck network of the original YOLOv5.Finally,a Copy-reduce-paste data augmentation method is introduced to improve the training effectiveness of the model.The experimental results show that the improved algorithm effectively improves the detection accuracy of small targets in remote sensing images,and reduces the false detection rate and missed detection rate.

YOLOv5remote sensing imagestarget detectionattention mechanismspatial purificationdata augmentation

张腾泽、李旭军、饶立明

展开 >

湘潭大学物理与光电工程学院,湖南 湘潭 411100

YOLOv5 遥感图像 目标检测 注意力机制 空间净化 数据增强

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 4