首页|信息熵和改进特征权重融合的Adaboost-SSA-BP步态识别方法

信息熵和改进特征权重融合的Adaboost-SSA-BP步态识别方法

扫码查看
针对采用加速度信号进行步态识别错误率偏高的问题,提出一种基于信息熵和改进特征权重融合的Adaboost-SSA-BP步态识别方法.基于信息熵理论和改进特征权重算法,提取不同步态下加速度计输出的信号特征,并对其进行特征组合.利用SSA优化BP神经网络,通过Adaboost算法调整网络的样本权重,并进行训练获得步态识别模型.实验结果表明:该方法能够有效捕获步态特征,步态识别的平均准确率可达96.15%,可为后期开展步态康复训练等相关研究提供技术支撑.
Adaboost-SSA-BP gait recognition method based on the fusion of information entropy and improved feature weight
Aiming at the problem of high error rate of gait recognition using acceleration signals,an Adaboost-SSA-BP gait recognition method based on the fusion of information entropy and improved feature weight is proposed.The features for the outputs from the accelerometer under different gait are extracted based on the information entropy theory and the improved feature weight method algorithm,and then the features are combined for the gait recognition.The BP neural network is optimized by SSA,the weight of the optimized network is adjusted by Adaboost algorithm,and the gait recognition model is obtained by iterative training.Experiment results show that the method can effectively capture gait features,and the average accuracy of gait recognition reaches 96.15%.It can provide the technical support for the related researches such as the gait rehabilitation training.

gait recognitionfeature combinationBP neural networkAdaboostSSA

高磊

展开 >

浙江理工大学信息科学与工程学院,浙江 杭州 310018

步态识别 特征组合 BP神经网络 Adaboost SSA

浙江省自然科学基金国家自然科学基金

LQ20F03001962203393

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 3