首页|基于光流和集成时-空-通道注意力的ResNet-10的微表情识别模型

基于光流和集成时-空-通道注意力的ResNet-10的微表情识别模型

扫码查看
针对一般模型很难捕捉微表情不同尺度上的特征,提出一种基于LiteFlowNet和改进的ResNet-10的微表情识别网络以充分提取微表情不同维度信息.先通过欧拉视频放大技术(EVM)突出面部微小动作,再将处理后的数据通过轻量级光流估计网络LiteFlowNet提取视频帧中的运动信息.在用于特征提取的ResNet-10上引入三维注意力机制(3D-Attention),以适应性地聚焦于微表情视频中最具辨别力的通道、空间和时间特征.实验结果验证了该网络有效提升了微表情识别性能.
Micro-expression recognition model based on optical flow and integrated spatio-temporal-channel attention of ResNet-10
In response to the difficulty of general models to capture the features of micro-expressions at different scales,a micro-expression recognition network based on LiteFlowNet and the improved ResNet-10 is proposed to fully extract the information of different dimensions of micro-expression.The facial micro-movements are first highlighted by EVM,and then the processed data are passed through a lightweight optical flow estimation network,LiteFlowNet,to extract the motion information in the video frames.3D-Attention mechanism is introduced on ResNet-10 for feature extraction to adaptively focus on the most discriminative channel,spatial and temporal features in the micro-expression video.The experimental results verify that the network effectively improves the micro-expression recognition performance.

micro-expression recognitionLiteFlowNet3D-AttentionResNet-10Eulerian video magnification(EVM)

梁岩、黄润才、卢士铖

展开 >

上海工程技术大学电子电气工程学院,上海 201600

微表情识别 LiteFlowNet 3D-Attention ResNet-10 EVM

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 6