首页|基于改进麻雀搜索算法的农业机器人路径规划

基于改进麻雀搜索算法的农业机器人路径规划

扫码查看
针对农业机器人在进行路径规划时存在寻优结果差和搜索稳定性低的问题,提出一种改进的麻雀搜索算法SSAPSO.首先利用Cubic混沌映射初始化种群来增强麻雀种群位置的多样性.然后通过萤火虫扰动策略,增加算法的灵活性和搜索范围.最后引入粒子群技术以提高算法的寻优精度和稳定性.实验结果表明,在不同障碍物覆盖率的栅格地图环境下,SSAPSO能高效且稳定地求解农业机器人最优路径,从而提高农业机器人的工作效率.
Path planning for agricultural robots based on improved sparrow search algorithm
An improved sparrow search algorithm,SSAPSO,is proposed to address the problems of poor search results and low search stability in path planning for agricultural robots.Firstly,Cubic chaotic mapping is used to initialize the population to enhance the diversity of sparrow population locations.Then,a firefly perturbation strategy is used to increase the flexibility and search range of the algorithm.Finally,particle swarm techniques are introduced to improve the search accuracy and stability.The experimental results show that SSAPSO can solve the optimal path of agricultural robots efficiently and stably in a raster map environment with different obstacle coverage,thus improving the efficiency of agricultural robots.

sparrow search algorithm(SSA)particle swarm optimization(PSO)algorithmagricultural robotpath planning

毛爽、代永强、刘欢

展开 >

甘肃农业大学信息科学技术学院,甘肃 兰州 730070

麻雀搜索算法 粒子群算法 农业机器人 路径规划

甘肃省高等学校创新基金甘肃省高等学校创新基金甘肃省自然科学基金甘肃省自然科学基金甘肃省自然科学基金资助项目

2022B-1072019A-05620JR10RA5101506RJZA00720JR10RA510

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 9