首页|基于特征融合的细粒度鸟类图像分类研究

基于特征融合的细粒度鸟类图像分类研究

扫码查看
特征金字塔(FPN)因能将低尺度的特征与更高尺度的特征融合、呈现每个层次丰富的语义信息,而被广泛应用于小尺度目标定位识别中,但其目前无法连接跨尺度特征信息,且分类准确率不高.本文提出特征融合金字塔模块(FFPN),通过在ResNet50主干网络中引入FFPN模块,有效地提高了细粒度鸟类图像分类的性能.模型在CUB-200-2011数据集上达到了83.379%的分类准确度,在Bird-400数据集中达到了91.201%的准确度,实现了较好的分类效果.
Research on fine-grained bird image classification based on feature fusion
Feature pyramid network(FPN)is widely used for small object detection and localization,owing to its ability to fuse features from different scales to provide rich semantic information for each feature level.However,the current FPN still cannot build connections between features across scales,and has suboptimal classification accuracy.To address this,the feature fusion pyramid network(FFPN)is proposed,which effectively improves the performance of fine-grained bird image classification by incorporating FFPN modules into the ResNet50 backbone.The model achieves 83.379%classification accuracy on CUB-200-2011 dataset and 91.201%on Bird-400 dataset,realizing good classification results.

feature fusionmulti-scale featuresfine-grained image classificationbird image recognition

李昊霖、俞成海、卢智龙、陈涵颖

展开 >

浙江理工大学计算机科学与技术学院,浙江 杭州 310018

华北电力大学

特征融合 多尺度特征 细粒度图像分类 鸟类图像识别

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 1