首页|基于超声波信号的行为识别方法

基于超声波信号的行为识别方法

扫码查看
作为近年来计算机视觉领域的研究热点,国内的行为识别技术主要依靠于不同场合的摄像头拍摄视频和图像进行分类识别、目标检测等相关视觉处理.因此,为了减少行为识别的消耗以及保护用户隐私,提出并实现了一种基于多普勒效应的行为识别技术,主要技术过程包括生成超声波信号、音频转换与降噪、连续音频切割、进行傅里叶变换以及卷积神经网络分类识别,行为识别的准确率可以达到 96.32%并且具备一定的泛化性能,应用前景广泛.
Behavior recognition method based on ultrasonic signals
As a research hotspot in the field of computer vision in recent years,the behavior recognition technology used in China mainly relies on the video and images captured by cameras for relevant visual processing such as classification,recognition and target detection.In order to reduce the consumption of behavior recognition and protect user privacy,a behavior recognition technology based on Doppler effect is proposed and implemented.The main technical process includes generating ultrasonic signal,audio conversion,noise reduction,continuous audio cutting,Fourier transform,and CNN classification and recognition.The accuracy of behavior recognition can reach 96.32%.It has certain generalization performance and broad application prospects.

ultrasonic waveDoppler effectconvolutional neural network(CNN)behavior recognition

杨飏、张雪

展开 >

中国海洋大学信息科学与工程学部,山东 青岛 266404

武汉大学信息管理学院

超声波 多普勒效应 卷积神经网络 行为识别

2023

计算机时代
浙江省计算技术研究所 浙江省计算机学会

计算机时代

影响因子:0.411
ISSN:1006-8228
年,卷(期):2023.(12)
  • 3