首页|基于改进自适应遗传算法的物流配送路径优化研究

基于改进自适应遗传算法的物流配送路径优化研究

扫码查看
针对物流运输中带软时间窗车辆路径优化问题,提出一种改进的自适应遗传算法;为消除遗传算法初始种群随机性强,个体分散的缺陷,采用精英保留选择方法,加快算法的收敛速度,同时提出了交叉概率和变异概率自适应调整的交叉和变异方法,进化过程中交叉概率和变异概率根据适应度、进化代数和进化过程中个体未改变数目个数来自适应变化,提高算法的局部搜索能力,有效避免了算法出现未成熟收敛的情况;将新的自适应遗传算法(new improved adaptive genetic algorithm,NIAGA)应用于该路径优化问题的求解,实验结果表明改进后的自适应遗传算法在求解物流配送路径优化问题上有明显优势.
Study on Optimization of Logistics Distribution Route Based on Improved Adaptive Genetic Algorithm
A new improved adaptive genetic algorithm is proposed for solving vehicle routing problem with soft time windows (VRPSTW).The initial population of genetic algorithm (GA) is highly stochastic and individual distribution is dispersed,so elitism strategy is adopted to improve operation speed.GA is prone to "premature" and in local optima trap when searching to near the local optima solution.To avoid algorithm immature convergence the paper proposes an adaptive adjustment method of crossover probability and mutation probabili ty.The new improved adaptive genetic algorithm is applied to vehicle routing problem.The results clearly demonstrate that the proposed method has better solution.

logistics distributionrouting optimizationgenetic algorithm

吴聪、陈侃松、姚静

展开 >

湖北大学计算机与信息工程学院物联网工程研究所,武汉430062

物流配送 路径优化问题 遗传算法

国家科技支撑计划项目

2015BAK03B02

2018

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2018.26(2)
  • 20
  • 3