首页|基于优化故障树模型的机械液压系统原位检测研究

基于优化故障树模型的机械液压系统原位检测研究

扫码查看
为了能够在不破坏系统现有内部结构的前提下,给机械液压系统的维修工作提供有效数据参考,提出基于优化故障树模型的机械液压系统原位检测方法;考虑机械液压系统的组成结构,模拟机械液压系统运行过程,设置机械液压系统原位检测测点;在测点位置上采集系统运行数据,利用构建的优化故障树判断当前机械液压系统是否处于故障状态,针对故障状态下的机械液压系统,计算流量、液压泄漏量等参数,得出机械液压系统的原位检测结果;通过性能测试实验得出结论:与传统检测方法相比,优化设计方法在液压值、液压油流量和泄漏量三个方面的参数检测误差分别有不同程度的降低,且检测过程对系统的不良影响更低,这表明优化设计方法具有更高的检测性能。
In-situ Detection of Mechanical Hydraulic System Based on Optimized Fault Tree Analysis Model
In order to provide an effective data reference for the maintenance of mechanical hydraulic system without destroying the existing internal structure of the system,an in situ detection method of the mechanical hydraulic system based on optimized fault tree model was proposed.The composition and structure of the mechanical hydraulic system are considered to simulate the operation process of the mechanical hydraulic system,and set up the in-situ detection of the mechanical hydraulic system.The operating data of the system is collected at the measuring location,and the constructed optimization fault tree is used to determine whether the current mechanical hydraulic system is in fault state.The flow rate,hydraulic leakage and other parameters are calculated for the mechanical hydraulic system in fault states,which obtains the in-situ detection results of the mechanical hydraulic system.Through the perform-ance test experiment,the results show that compared with the traditional detection methods,the optimized method reduces the detec-tion errors of hydraulic value,hydraulic oil flow and leakage respectively,with different degrees reduced,and the poor effects on the system detection process are lower,which indicates that the optimized design method has a higher detection performance.

optimizing fault tree analysis modelmechanical hydraulic systemin situ testingfault conditions

刘博伟、杨佩璇、何广川

展开 >

重庆医科大学附属第一医院,重庆 400000

中国汽车工程研究院股份有限公司,重庆 400000

安道拓(重庆)汽车部件有限公司,重庆 400000

优化故障树模型 机械液压系统 原位检测 故障状态

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(1)
  • 20