首页|基于改进轻量化YOLOX的无人机航拍目标检测算法

基于改进轻量化YOLOX的无人机航拍目标检测算法

扫码查看
针对小型无人机在巡逻航拍中的应用,提出了一种改进的轻量化目标检测算法,有效解决巡逻过程中空地无线传输信道和机载端计算能力双重受限的难题;该算法在YOLOX算法的基础上,首先利用Mobilenetv2代替CSPDarknet骨干网络作为特征提取网络,降低了模型参数量和计算量,提高目标检测实时性;其次为了弥补轻量化带来的检测精度下降,考虑检测目标框的长宽比引入CIOU定位损失函数,提升目标定位的精度;同时为了平衡训练过程中的正负难易样本,引入Focal Loss置信度损失函数提升模型的检测性能;基于VisDrone2019-DET数据集实验表明,改进后算法模型参数量降低了 56。2%,计算量降低了52。5%,在检测精度没有明显下降情况下单张图片推理时间减少了 41。4%;最后,将改进后的算法部署到Nvidia Jetson Xavier NX机载端,测得模型检测帧率可达22 FPS,改进后算法满足巡逻任务的应用需求。
A Lightweight Algorithm for UAV Aerial Image Objects Detection Based on Improved YOLOX
Aimed at small unmanned aerial vehicle(UAV)patrol applications,a lightweight object detection algorithm is pro-posed to effectively solve the dual constraints of wireless transmission channel and onboard computing resource during the patrol process.Firstly,the Mobilenetv2 network is used as feature extraction network of YOLOX algorithm to reduce the parameters and computation of the model,and improve the speed of object detection.Secondly,the CIOU loss function is introduced to improve the precision of object positioning.Thirdly,a Focal Loss confidence loss function is introduced to balance the positive and negative or dif-ficult and easy samples in training process,improving the performance of the model.Experimental results based on VisDrone2019-DET dataset show that the improved algorithm reduces the model parameters by 56.2%,the calculation by 52.5%,and the inference time of single image by 41.4%,without a significant decrease in detection accuracy.Finally,the improved algorithm is deployed to the Nvidia Jetson Xavier NX,and the model detection frame rate reaches by 22 FPS,which meets the application requirements of pa-trol tasks.

UAVobject detectionlightweightYOLOXFocal LossCIOU

胡潇、潘申富

展开 >

中国电子科技集团公司第54研究所,石家庄 050081

无人机 目标检测 轻量化 YOLOX Focal Loss CIOU

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(1)
  • 5