首页|基于改进YOLOv5的飞机舱门识别与定位方法研究

基于改进YOLOv5的飞机舱门识别与定位方法研究

Research on Identification and Positioning Method for Aircraft Door Based on Improved YOLOv5

扫码查看
机场特种车辆的自动靠机是未来智慧机场发展的必然要求,实现自动靠机的关键是对飞机舱门进行准确识别与定位;针对于此问题,提出一种基于改进YOLOv5和单目视觉的舱门识别与定位方法,通过在模型中加入了一种轻量化的卷积注意力模块(CBAM,convolutional block attention module),提高了算法对飞机舱门的特征提取能力;针对YOLOv5的重复特征提取问题,引入了空间金字塔池化结构(SPPCSPC,spatial pyramid pooling cross stage paritial connection),并改进分组卷积组数为4,提高了算法的检测精度;通过获取候选框中角点的像素,利用空间几何关系,实现了对舱门准确的三维定位.实验结果表明,改进后的YOLOv5算法mAP达到96.5%,相比原有算法提升了 5.6%.在舱门前方19 m和1 m处时,实时最大定位误差分别为0.15 m和0.01 m,能够满足特种车辆靠机完成后与舱门保持5~10 cm的安全距离要求.
The automatic docking of airport special vehicles is an inevitable requirement for the development of smart airports in the future;It is the key step for automatic docking is to accurately identify and locate aircraft door.Aiming at this problem,an air-craft door recognition and positioning method based on improved YOLOv5 and monocular vision is proposed.By adding a lightweight convolutional block attention module(CBAM)in the model,the algorithm improves its ability to extract features from aircraft doors;A spatial pyramid pooling cross stage partial connection(SPPCSPC)is introduced to solve the problem of repetitive feature extraction in YOLOv5,and improving the number of group convolution groups to 4 and the detection accuracy of the algorithm;The pixels of corner points in the candidate frame are obtained,and the spatial geometric relationships are utilized to achieve the accurate three-di-mensional positioning of the aircraft door.The experimental results show that the mean average precision(mAP)of improved YOLOv5 algorithm reaches 96.5%,the mAP of improved algorithm is 5.6%higher than that of the original algorithm.The real-time maximum positioning errors of 19 m and 1 m in front of the aircraft door are 0.15 m and 0.01 m,respectively,which can meet the re-quirements of maintaining a safe distance of 5~10 cm from the aircraft door after the docking of special vehicles.

identification and positioning of aircraft doorairport special vehiclesautomatic docking of airportYOLOv5 algo-rithmthree-dimensional positioning

张长勇、郭聪、李玉洲、张朋武

展开 >

中国民航大学电子信息与自动化学院,天津 300300

南航股份公司工程技术分公司北京基地,北京 102602

舱门识别与定位 机场特种车辆 自动靠机 YOLOv5 三维定位

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(1)
  • 11