首页|基于改进YOLOv5的飞机舱门识别与定位方法研究

基于改进YOLOv5的飞机舱门识别与定位方法研究

扫码查看
机场特种车辆的自动靠机是未来智慧机场发展的必然要求,实现自动靠机的关键是对飞机舱门进行准确识别与定位;针对于此问题,提出一种基于改进YOLOv5和单目视觉的舱门识别与定位方法,通过在模型中加入了一种轻量化的卷积注意力模块(CBAM,convolutional block attention module),提高了算法对飞机舱门的特征提取能力;针对YOLOv5的重复特征提取问题,引入了空间金字塔池化结构(SPPCSPC,spatial pyramid pooling cross stage paritial connection),并改进分组卷积组数为4,提高了算法的检测精度;通过获取候选框中角点的像素,利用空间几何关系,实现了对舱门准确的三维定位。实验结果表明,改进后的YOLOv5算法mAP达到96。5%,相比原有算法提升了 5。6%。在舱门前方19 m和1 m处时,实时最大定位误差分别为0。15 m和0。01 m,能够满足特种车辆靠机完成后与舱门保持5~10 cm的安全距离要求。
Research on Identification and Positioning Method for Aircraft Door Based on Improved YOLOv5
The automatic docking of airport special vehicles is an inevitable requirement for the development of smart airports in the future;It is the key step for automatic docking is to accurately identify and locate aircraft door.Aiming at this problem,an air-craft door recognition and positioning method based on improved YOLOv5 and monocular vision is proposed.By adding a lightweight convolutional block attention module(CBAM)in the model,the algorithm improves its ability to extract features from aircraft doors;A spatial pyramid pooling cross stage partial connection(SPPCSPC)is introduced to solve the problem of repetitive feature extraction in YOLOv5,and improving the number of group convolution groups to 4 and the detection accuracy of the algorithm;The pixels of corner points in the candidate frame are obtained,and the spatial geometric relationships are utilized to achieve the accurate three-di-mensional positioning of the aircraft door.The experimental results show that the mean average precision(mAP)of improved YOLOv5 algorithm reaches 96.5%,the mAP of improved algorithm is 5.6%higher than that of the original algorithm.The real-time maximum positioning errors of 19 m and 1 m in front of the aircraft door are 0.15 m and 0.01 m,respectively,which can meet the re-quirements of maintaining a safe distance of 5~10 cm from the aircraft door after the docking of special vehicles.

identification and positioning of aircraft doorairport special vehiclesautomatic docking of airportYOLOv5 algo-rithmthree-dimensional positioning

张长勇、郭聪、李玉洲、张朋武

展开 >

中国民航大学电子信息与自动化学院,天津 300300

南航股份公司工程技术分公司北京基地,北京 102602

舱门识别与定位 机场特种车辆 自动靠机 YOLOv5 三维定位

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(1)
  • 11