首页|基于改进遗传算法优化的RBF网络的信道估计

基于改进遗传算法优化的RBF网络的信道估计

扫码查看
为了提高通信系统信道估计的准确率,同时适应更大的数据量,进行更加复杂的数据计算,引入神经网络的方法进行信道估计,采用了 BP和RBF神经网络进行实验对比,与传统信道估计方式相比有明显提升;在此基础上,进一步提出基于改进遗传算法优化的RBF神经信道估计方法,目的是帮助确定RBF网络的隐藏层参数,使得网络的参数趋于全局最优解,信道估计器的性能从而得到提升。经过Matlab仿真,改进后的RBF神经网络可以更好地解决信道估计问题,验证了此方法的可行性。
Channel Estimation of RBF Networks Based on Improved Genetic Algorithm Optimization
In order to improve the accuracy of channel estimation in communication systems and adapt to larger data for more complex data calculation,a neural network method was introduced for channel estimation.Experiment comparsion is conducted be-tween the radial basis function(RBF)neural network and back propagation(BP)neural network,compared with traditional channel estimation methods,the experimental results show significant improvement.On this basis,an RBF neural channel estimation method based on improved genetic algorithm was also proposed.The purpose is to determine the hidden layer parameters of RBF network,making the network parameters to the universally optimal solution,and then improving the efficacy of the channel estimator.The en-hanced RBF neural network effectively resolve the channel estimation by MATLAB simulation,thereby verifying the feasibility of this approach.

orthogonal frequency division multiplexing(OFDM)systemgenetic algorithmRBF neural networkchannel esti-matorMatlab

胡一晨、耿虎军

展开 >

中国电子科技集团公司第54研究所,石家庄 050081

OFDM系统 遗传算法 RBF神经网络 信道估计器 Matlab

国家自然科学基金青年科学基金项目

62101517

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(1)
  • 8