首页|基于视觉图像与激光点云融合的交通标志快速识别方法

基于视觉图像与激光点云融合的交通标志快速识别方法

扫码查看
交通标志对车辆交通起到重要作用和意义,而智能交通中交通标志识别由于标志特征提取效果差,导致识别率低、识别时间长,因此,提出一种新的基于视觉图像与激光点云融合的交通标志快速识别方法。采用双边滤波方法预处理原始激光点云数据;通过归一化处理得到视觉图像激光点云融合的目标空间激光点云位置测距数值;通过测距值获取目标图像位置,归一化处理交通标志视觉图像,引入6均值聚类算法二聚类处理图像,采用制作的切割模板切割图像感兴趣区域,提取交通标志图像的深度特征,结合卷积神经网络二次过滤特征,重新标定二次过滤后的特征,最终利用卷积神经网络模型实现交通标志快速识别;经实验对比证明,采用所提方法提取各个类型交通标志特征的提取效果较好,并且识别率达到89。74%,识别时间仅为13。1 s,干扰下识别时间最高仅为15。1 s,验证了该方法可以快速且准确识别各个类型的交通标志。
Fast Recognition Method of Traffic Signs Based on Fusion of Visual Image and Laser Point Cloud
Traffic signs play an important role and significance in vehicle traffic.However,in intelligent traffic,the recognition of traffic signs has poor performance due to the sign feature extraction,which leads to the features of low recognition rate and long rec-ognition time.Therefore,a new rapid recognition method of traffic signs based on the fusion of visual image and laser point cloud is proposed.Bilateral filtering method is used to preprocess the original laser point cloud data.The location ranging values of laser point cloud in target space are obtained by normalized processing.The location of the target image is obtained by the ranging value,the traffic sign visual image performs normalization processing,the k-means clustering algorithm is introduced to process the image by bi-nary clustering,the region of interest(ROI)of the image is cut by using the making cutting template,and the depth features of the traffic sign image are extracted.Combined with the convolutional neural network,the features after the second filtering are re-calibra-ted.Finally,the convolutional neural network model is used to realize the rapid recognition of traffic signs.The experimental compar-ison shows that the proposed method has a good feature extraction effect for all types of traffic signs,and the recognition rate reaches 89.74%,the recognition time is only 13.1 s,and the highest recognition time is only 15.1 s under the interference conditions,which verifies that this method can quickly and accurately identify all types of traffic signs.

visual imagelaser point cloudtraffic signquick identificationk-means clustering algorithmconvolutional neural network

王坤、倪娟、陈印

展开 >

四川信息职业技术学院软件学院,四川广元 628000

中国人民解放军94333部队,山东潍坊 621000

重庆工程学院,重庆 400056

视觉图像 激光点云 交通标志 快速识别 k均值聚类算法 卷积神经网络

重庆市教育委员会科学技术研究项目国家级大学生创新创业训练计划项目

KJZD-M202001901202212608006

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(1)
  • 1
  • 18