首页|面向DSP平台的CiSSA-CSP特征提取算法的移植与优化

面向DSP平台的CiSSA-CSP特征提取算法的移植与优化

扫码查看
为实现便携式信号二分类解析系统的在线实时处理,采用DSP平台完成CiSSA-DSP特征提取算法的嵌入式移植;CiSSA-CSP特征提取算法具有出色的时-频-空域特征提取性能,适合于提取实时二分类系统中非平稳信号的特征;相比于PC机,嵌入式系统具有小型化、便携性、低功耗和低延时的特点,而嵌入式平台处理器的计算资源和内存受到限制,必须优化移植特征提取算法,才能保证二分类解析系统的分类精度和低延时;通过优化CiSSA-CSP算法流程,使用编译器优化、关键字和库函数等手段提高编译效率,将CiSSA-CSP特征提取算法移植到TMS320C6678DSP嵌入式平台,并利用公共数据库数据验证了其用于实时分类系统的有效性;相比于PC机的Matlab实现,DSP平台实现的二分类系统分类准确度下降小于0。5%,且单次实验信号解析耗时少于0。15 s。
Transplant and Optimization of CiSSA-CSP Feature Extraction Algorithm on DSP Platform
In order to realize the on-line and real-time processing of portable signal binary classification analysis systems,DSP platform is used to implement the embedded transplantation of CiSSA-DSP feature extraction algorithm.A CiSSA-CSP feature extrac-tion algorithm has the excellent performance of time-frequency-spatial feature extraction,and it is suitable for extracting non-stationa-ry signals in real-time binary classification system.Compared with PC,an embedded implementation has the characteristics of minia-turization,portability,low power consumption and low delay,while the computing resources and memory of embedded platform pro-cessor is limited,and the transplant feature extraction algorithm must be optimized to ensure the binary classification accuracy and low delay.The steps of the CiSSA-CSP algorithm,the compiler optimization,keywords and library functions are optimized to improve the compilation efficiency,the CiSSA-CSP feature extraction algorithm is transplanted to the TMS320C6678 embedded DSP platform,and its effectiveness for real-time classification system is verified by the public dataset.Compared with Matlab on PC,the classification ac-curacy of the binary classification system is reduced by less than 0.5%on the DSP platform,and the computing time for singel experi-ment is less than 0.15s.

binary classificationfeature extractionCiSSA-CSPDSPtransplant and optimization

刘哲贤、赵金库、赵玉峰、王鹏

展开 >

清华大学精密仪器系,北京 100084

黑龙江北方工具有限公司,黑龙江牡丹江 157000

二分类 特征提取 CiSSA-CSP DSP 优化移植

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(1)
  • 2