首页|基于改进YOLOv5s的输电线路防外力破坏行为检测识别

基于改进YOLOv5s的输电线路防外力破坏行为检测识别

扫码查看
电力系统的安全对于整个能源传输过程至关重要;针对输电线路下超大工程车辆和烟火为主要的外力破坏行为,对单阶段目标检测算法YOLOv5s进行改进,首先针对输电线路多雨雾烟尘等工作环境,引入限制对比度自适应直方图均衡算法CLAHE对图片进行去雾处理,提升图片对比度;针对检测目标距离较远的问题,在YOLOv5s网络的基础上添加CA注意力机制,提升了模型对目标的定位能力;将原网络中的最邻近差值采样方式替换为轻量级通用上采样算子CARAFE,更好地捕捉特征图的同时引入较小的参数量;最后在网络的特征融合层,使用具有通道混洗思想的GSConv卷积模块代替标准卷积模块,减少模型参数量,再利用slim_neck特征融合结构,强化目标关注度,达到减少模型参数量同时提升检测精度的效果;实验结果表明:改进后的YOLOv5s网络,mAP提升了 4。4%,参数量减少了 3。4%,权重模型内存减小了 2。7%,证明了算法的有效性。
Detection and Identification of Transmission Line Damage Prevention Behavior Based on Improved YOLOv5s
It is crucial for the safety of the power system in the entire energy transmission process.Aiming at the main external force destruction behavior of super large engineering vehicles and fireworks in the transmission line,the single-stage target detection algorithm YOOv5s is improved.Firstly,for the working environment of the transmission line with heavy rain,fog and dust,the re-stricted contrast limited adaptive histogram equalization(CLAHE)algorithm is introduced to defog the image,and improve the image contrast;In response to the long distance problem of detecting targets,a coordinate attention(CA)mechanism is added to the YOLOv5s network to enhance the model's ability to locate targets;The nearest neighbor difference sampling method in the original network is replaced with the lightweight universal up-sampling operator content-aware reassembly of features(CARAFE),which bet-ter captures the feature map while introducing smaller parameter quantities;Finally,in the feature fusion layer of the network,a ghost-shuffle convolution(GSConv)module with channel shuffling idea is used to replace the standard convolution module,reducing the model parameters,and then Slim_Neck feature fusion structure is utilized to enhance the target attention,reducing the model parameters while improving the detection accuracy.The experimental results show that the mean average precision(mAP)of the im-proved YOLOv5s network improves by 4.4%,the number of the parameters reduces by 3.4%,and the memory of the weight model by 2.7%,proving that the algorithm is effectiveness.

target detectionexternal force damageYOLOv5sCA attentionCARAFEGSConv_Slimneck

郑良成、曹雪虹、焦良葆、高阳、王彦生

展开 >

南京工程学院人工智能产业技术研究院,南京 211167

江苏省智能感知技术与装备工程研究中心,南京 211167

目标检测 外力破坏 YOLOv5s CA注意力 CARAFE GSConv_slimneck

江苏省自然科学基金项目江苏省政策引导类计划项目

BK20201042SZ-SQ2020007

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(2)
  • 16