首页|采用改进被囊群算法的多冷水机组负荷分配优化

采用改进被囊群算法的多冷水机组负荷分配优化

扫码查看
为了降低中央空调系统的运行能耗,针对多冷水机组负荷分配优化问题,提出一种随机森林特征优选结合核函数极限学习机的冷水机组能效预测模型,通过剔除冗余特征提高预测精度;然后提出一种混合策略改进的被囊群算法,融合鲸鱼螺旋搜索策略改进个体更新方式,引入非线性动态权重平衡全局探索和局部开发,使用空翻扰动策略避免陷入局部最优;最后在能效模型的基础上,采用改进被囊群算法对多冷水机组负荷分配进行优化;实验结果表明,随机森林特征优选的方法可以有效地提高能效预测模型的准确度;改进被囊群算法通过优化机组的启停状态和负荷率可以有效发挥系统的节能潜力,与原有方法相比能耗降低约6%;说明该方法适用于多冷水机组的负荷分配优化问题。
Load Distribution Optimization for Multiple Chillers Using Improved Tunicate Swarm Algorithm
In order to reduce the energy consumption of central air-conditioning systems,and aimed at the problem of load distri-bution optimization in multiple chillers,this paper proposes a performance prediction model for chills based on random forest feature optimization combined with kernel function extreme learning machine,the prediction accuracy of the model is improved by eliminating redundant features.Then an improved tunicate swarm algorithm(ITSA)based on hybrid strategy is proposed.A whale spiral search strategy is integrated to improve individual update methods,introducing non-linear dynamic weight balancing for global exploration and local development,a flip disturbance strategy is used to avoid falling into partial optimum.Finally,based on the energy-efficiency model,the ITSA is used to optimize the load allocation of multiple chillers.The experimental results show that the random forest fea-ture optimization can effectively improve the accuracy of the energy efficiency prediction model.The ITSA can effectively save the po-tential energy of the system by optimizing the on-off status and load ratio of the chillers.Compared with the original method,the en-ergy consumption can be reduced by about 6%,which shows that the method is appropriate for optimal load allocation of multiple chillers.

tunicate swarm algorithmload distributionmultiple chillersextreme learning machinerandom forest

王华秋、秦思危

展开 >

重庆理工大学两江人工智能学院,重庆 401135

被囊群算法 负荷分配 多冷水机组 极限学习机 随机森林

国家科技部重点研发计划重庆市科委一般自然基金项目

2018YFB1700803cstc2019jcyjmsxmX0500

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(2)
  • 13