首页|基于特征点改进的视觉SLAM定位研究

基于特征点改进的视觉SLAM定位研究

扫码查看
为改善视觉SLAM系统在低纹理环境下定位精度较低的现象,提出一种改进的ORB特征点提取策略和一种关键帧选择机制;首先采用多尺度分析和基于局部灰度的特征检测方法克服一般ORB算法缺乏尺度和旋转描述的缺点;其次提出一种基于高斯模糊的图像信息增强方法解决传统ORB特征点提取方法在纹理信息不被突出环境下容易失效的问题,并对图像进行象限分割使特征点均匀分布;最后为剔除劣质关键帧,设计了一种综合时间因素与特征点数量因素的关键帧选择机制;将提出的方法移植到O RB_SLAM2上,并在TUM数据集上测试,实验结果表明,视觉SLAM系统的定位误差平均降低14。688%,证实了该方法的有效性。
Research on Improved Visual SLAM Localization Based on Feature Points
In order to improve the low localization accuracy of simultaneous localization and mapping(SLAM)system in low tex-ture environment,this paper proposes an improved oriented FAST and rotated BRIEF(ORB)feature point extraction strategy and key frame selection mechanism.Firstly,multi-scale analysis and feature detection method based on local gray level are used to over-come the shortcomings of lack scale and rotation description in general ORB algorithm.Secondly,an image information enhancement method based on Gaussian blur is proposed to solve the problem that the texture information of the traditional ORB feature point ex-traction method is easy to fail in special environment,and the image is segmented to evenly distribute the feature points.Finally,in order to eliminate the inferior key frames,a key frame selection mechanism combining time factor and feature point number factor is designed.The proposed method is transplanted to the ORB_SLAM2,and testing on the TUM dataset,the experimental results show that the localization error of the visual SLAM system is reduced by 14.688%on average,which proves the effectiveness of the proposed method.

visual SLAMlow texturefeature pointskey frameslocalization

王伟、汤琴琴、汪先伟

展开 >

南京信息工程大学 自动化学院,南京 210000

无锡学院轨道交通学院,江苏 无锡 214000

视觉SLAM 低纹理 特征点 关键帧 定位

第十六批次江苏省"六大人才高峰"高层次人才项目江苏省自然科学基金面上项目南京信息工程大学无锡校区研究生创新实践项目

XYDXX-045BK20211037WXCX202121

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(2)
  • 11