首页|基于Co-PSPNet的轻量级水下鱼体图像分割算法

基于Co-PSPNet的轻量级水下鱼体图像分割算法

扫码查看
为解决水下环境中图像模糊和资源有限等问题,提出了一种基于Co-PSPNet网络的轻量级水下鱼体图像分割算法;主干网络使用了 MobileNetV2,以降低网络的计算复杂度和参数量;引入了 CoordConv模块,以增强网络对鱼体边界等细节信息的感知能力;将全局池化后的特征作为注意力机制网络的输入,以增强具有较高语义信息的特征;经过大量的实验评估,该算法在公开的水下鱼体图像数据集上取得了优越的性能;实际应用中,该算法满足了水下生态研究和水下机器人领域对水下鱼体图像分割的工程需求;通过对水下环境下图像模糊和资源限制等问题的解决,该算法为水下生态研究和水下机器人领域的应用提供了有效的图像分割解决方案。
A Lightweight Underwater Fish Body Image Segmentation Algorithm Based on Co-PSPNet
To solve the problems of image blurring and limited resources in underwater environments,a lightweight underwater fish segmentation algorithm based on the Co-PSPNet network is proposed.The main network employs MobileNetV2 to reduce compu-tational complexity and parameter count.The CoordConv module is introduced to enhance the network to the perception of detailed in-formation like fish boundaries.The features obtained after the global pooling are used as inputs for an attention mechanism network,enhancing the features with higher semantic information.Through the extensive experimental evaluation,the algorithm has a superior performance of publicly available underwater fish image datasets.In practical applications,this algorithm meets the engineering re-quirements of underwater fish image segmentation in the domains of underwater ecology research and underwater robotics.By solving the image blurring and resource limitations in underwater environments,the proposed algorithm provides an effective solution for im-age segmentation in underwater ecology research and underwater robotics applications.

image segmentationlightweight algorithmPSPNetCoordConv moduleunderwater fishattention mechanics

李晓雯、李海涛、高树静、张俊虎

展开 >

青岛科技大学信息科学技术学院,山东青岛 266061

图像分割 轻量级算法 PSPNet CoordConv模块 水下鱼体 注意力机制

山东省重点研发计划(科技示范工程)课题青岛市海洋科技创新专项

2021SFGC070122-3-3-hygg-3-hy

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(2)
  • 6