首页|基于特征重加权的小样本遥感图像目标检测算法

基于特征重加权的小样本遥感图像目标检测算法

扫码查看
针对遥感图像具有目标尺度多变、目标模糊、背景复杂的特点,提出了一种基于特征重加权的遥感小样本目标检测算法RE-FSOD;该模型包括3部分:元特征提取器、特征重加权提取器、预测模块,其中元特征提取器由CSPDarknet-53、FPN以及PAN构成,负责提取数据的元特征;特征重加权提取器用于生成特征重加权向量,用于调整元特征来强化对于检测新类有帮助的特征;预测模块由YOLOv3的预测模块构成,在此基础上将定位损失函数替换为CIOU损失函数,提升模型的定位精度;最后在NWPU VHR-10遥感数据集上进行了训练和测试,实验结果表明,该方法相较于基线方法FSODM的在3-shot、5-shot、10-shot情况下分别提升了约19%、11%、8%。
Few-shot Object Detection on Remote Sensing Images Based on Feature Reweighting
Aimed at the characteristics of variable target size,fuzzy target,and complex background,a few-shot object detection model based on feature reweighting is proposed.The model consists of three parts of element feature extractor,feature reweighting extractor and prediction module.The element feature extractor is composed of CSPDarknet-53,feature pyramid network(FPN)and path aggregation network(PAN),which is responsible for extracting the element features of data.The feature reweighting extractor is used to generate the feature reweighting vectors,and adjust the element features to enhance the helpful features for detecting new classes.The prediction module is composed of the prediction module of YOLOv3.On this basis,the positioning loss function is re-placed by CIOU to improve the positioning accuracy of the model.Finally,the training and testing are carried out on the NWPU VHR-10 remote sensing data set.The experimental results show that compared with the baseline method FSODM,the mean average precision(mPA50)improves by 19%,11%and 8%at the conditions of 3-shot,5-shot and 10-shot respectively.

fewshot object detectionYOLOtransfer learningfeature reweightingattention mechanism

周博、葛洪武、李珩、李旭

展开 >

中国电子科技集团公司第54研究所,石家庄 050081

小样本目标检测 YOLO 迁移学习 特征重加权 注意力机制

国防基础科研计划

JCKY2020210B021

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(2)
  • 1