首页|基于指纹库更新补偿的波束跟踪算法研究

基于指纹库更新补偿的波束跟踪算法研究

扫码查看
针对拒止、复杂电磁环境下,高动态无人节点定向通信面临的坐标信息不精确、飞行姿态和轨迹变化剧烈等问题,为保持可靠的波束对准与跟踪,提出了一种基于卡尔曼滤波的指纹库更新补偿算法;利用卡尔曼滤波算法对自身姿态进行预测更新,建立载体坐标系;采用改进的算法对波束指向进行预测更新,并利用指纹库对状态向量进行更新补偿,调节采样比例,并将新的数据存入指纹库对数据更新,进行二次状态信息预测,完成最终波束指向;整体设计的波束跟踪算法流程更加符合实际应用场景,满足通信需求;仿真结果表明,在半波束宽度为3°,100个通信时隙中,维持正常通信的成功率有92%以上,相比传统跟踪算法提高了 8%,具有更加稳定的通信质量。
Research on Beam Tracking Algorithm Based on Fingerprint Database Update Compensation
In order to solve the inaccurate coordinate information and dramatic changes in flight attitude and trajectory faced by the directional communication of high dynamic unmanned nodes in denial and complex electromagnetic environments,and maintain the re-liable alignment and tracking of beam,a fingerprint database update compensation algorithm based on Kalman filter is proposed.The Kalman filter algorithm is used to predict and update its own attitude,and establish the vector coordinate system.The improved algo-rithm is used to predict and update the beam pointing.The fingerprint database is used to update and compensate the state vector,and adjust the sampling ratio,and the new data is stored in the fingerprint database to update the data.The secondary state information is predicted to complete the final beam pointing.The overall design of the beam tracking algorithm process is more in line with the ac-tual application scenario and meets the communication needs.The simulation results show that the success rate of maintaining normal communication is more than 92%with 100 communication time slots and half-beam width of 3°,the success rate of the proposed algo-rithm is 8%higher than that of traditional tracking algorithms.It has more stable communication quality.

UAV ad hoc networkunscented Kalman filterUAV attitudefingerprint databasebeam trackingupdating com-pensation algorithm

崔字宇、魏浩、赵琪、王亚舟

展开 >

中国电子科技集团公司第54研究所,石家庄 050081

无人机自组网 无迹卡尔曼滤波 无人机姿态 指纹库 波束跟踪 更新补偿算法

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(2)
  • 6