首页|基于知识图谱的网络安全漏洞智能检测系统设计

基于知识图谱的网络安全漏洞智能检测系统设计

扫码查看
网络安全漏洞智能检测需要依赖大量的真实数据来进行分析,冗余数据与异常数据的存在会导致检测准确性下降;为保障网络系统稳定运行,提出基于知识图谱的网络安全漏洞智能检测系统设计研究;从结构、逻辑模型以及运行模式3个方面设计网络安全漏洞检测器,实现网络安全漏洞智能检测系统硬件设计;系统软件设计通过网络爬虫采集安全漏洞数据,去除冗余数据与异常数据,根据属性信息识别安全漏洞实体,获取安全漏洞属性信息关系,以此为基础,定义安全漏洞知识图谱表示形式,设计安全漏洞知识图谱结构,从而实现安全漏洞知识图谱的构建与可视化;以上述网络设计结果为依据构建网络安全漏洞智能检测整体架构,制定网络安全漏洞智能检测具体流程,从而获取最终网络安全漏洞智能检测结果;实验结果表明,在不同实验工况背景条件下,设计系统应用后的网络安全漏洞漏检率最小值为1。23%,网络安全漏洞检测F1值最大值为9。50,网络安全漏洞检测响应时间最小值为1 ms,证实了设计系统的安全漏洞检测性能更佳。
Design of Intelligent Detection System for Network Security Vulnerabilities Based on Knowledge Graph
The intelligent detection of network security vulnerabilities relies on a large amount of real data for analysis,and re-dundant and abnormal data can lead to a decrease in detection accuracy.In order to ensure the stable operation of network systems,a network security vulnerability intelligent detection system design based on knowledge graph is proposed.The network security vulner-ability detector from three aspects of the structure,logical model,and operation mode is designed to achieve the hardware design of the intelligent network security vulnerability detection system.The system software design collects security vulnerability data through web crawlers,removes redundant data and abnormal data,identifies security vulnerability entities according to attribute information,and obtains security vulnerability attribute information relationships.Based on this,it defines the representation form of the security vulnerability knowledge graph,designs the security vulnerability knowledge graph structure,and the construction and visualization of security vulnerability knowledge graph are realized;Based on the above network design results,an overall architecture for intelligent detection of the network security vulnerabilities is constructed to develop the specific process for the intelligent detection of the net-work security vulnerabilities,and obtain the final intelligent detection results of the network security vulnerabilities.The experimen-tal results show that under different experimental conditions,the minimum network security vulnerability detection rate of the de-signed system after application is 1.23%,the maximum F1 value of the network security vulnerability detection is 9.50,and the mini-mum response time of the network security vulnerability detection is 1 ms,confirming that the designed system has a optimal security vulnerability detection performance.

network securityintelligencevulnerability miningknowledge graphvulnerability detection

杜艺帆、丛红艳

展开 >

西北大学 现代学院,西安 710130

西安工程大学新媒体艺术学院,西安 710048

网络安全 智能化 漏洞挖掘 知识图谱 漏洞检测

陕西省教育厅一般专项科研计划(2022)

22JK0193

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(3)
  • 20