首页|基于改进YOLOv网络的外观检测研究

基于改进YOLOv网络的外观检测研究

扫码查看
外观检测涉及对图像或视频中的物体进行准确和高效的识别和定位,为了解决物体表面小尺寸目标检测的问题,研究通过优化YOLOv3网络模型,引入多尺度检测和深度可分离卷积技术来提高检测精度和模型效率,以增强对小尺寸目标的识别能力,再采用深度可分离卷积技术来减少计算量,并提高模型的训练效果;实验结果表明,研究模型在物体表面小尺寸检测方面取得显著提升;与其他金属表面损伤检测算法相比,优化后的YOLOv3实现了 71。52%的检测精度,超越Faster R-CNN 6。83%;尽管Faster R-CNN在准确性方面优异但速度慢,SSD速度较快但不及YOLOv2;而YOLOv2虽速度快但精度稍低;相对于原始模型,研究算法的平均精度提升了 7。77个百分点,达到了 79。21%;虽然网络深度的提升稍增计算量,略有检测速率下降,但引入深度可分离卷积后,检测速度达到36。2帧/秒,仅较原模型稍低2。4帧/秒;研究可以优化算法,提高小尺寸目标检测的准确性和鲁棒性,推动其在计算机视觉领域的广泛应用。
Research on Appearance Detection Based on Improved YOLOv Network
Appearance detection involves the accurate and efficient recognition and positioning of objects in images or videos.In order to solve the small-sized target detection on the surface of objects,the paper optimizes the YOLOv3 network model,introduces the multi-scale detection and depth separable convolution technology to improve the detection accuracy and efficiency of the model to enhance the recognition ability of small-sized targets,and then the depth separable convolution technology is used to reduce the a-mount of calculation and improve the training effect of the model.The experimental results show that the research model has achieved a significant improvement in the detection of small-scale objects on the surface.Compared with other metal surface damage detection algorithms,the optimized YOLOv3 achieves a detection accuracy of 71.52%,surpassing that of the Faster R-CNN by 6.83%.Al-though the Faster R-CNN is excellent in accuracy but slow in speed,the seed of SSD is faster but not as good as that of YOLOv2.While the speed of YOLOv2 is fast but low in accuracy.Compared with the accuracy of the original model,the average accuracy of the research algorithm has increased by 7.77%,reaching 79.21%.Although the increase in network depth slightly increases the amount of calculations and slightly reduces the detection rate,but the introduction of depth-separable convolution,the detection speed reaches 36.2 fps,which is only slightly lower than the original model by 2.4 fps.The optimized algorithm improves the accuracy and robust-ness of small-sized object detection,and promotes its wide application in the field of computer vision.

appearance detectiondeep learningYolovmulti-scale fusionclustering algorithm

李莉、黄承宁

展开 >

南京工业大学浦江学院,南京 210000

外观检测 深度学习 yolov 多尺度融合 聚类算法

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(3)
  • 22