首页|通风机械仪表盘在复杂背景环境中视觉故障检测与定位研究

通风机械仪表盘在复杂背景环境中视觉故障检测与定位研究

扫码查看
通风机械仪表盘往往处于复杂的背景环境中,阴影或部分遮挡会在图像中引入不一致的颜色、亮度和纹理变化,使得故障区域与周围环境的对比度下降,导致人工方法难以正确定位故障区域;针对这些问题,设计一种通风机械仪表盘视觉故障检测与定位方法;使用Kinect相机提取通风机械仪表图像,并进行直方图均衡化来调节图像的亮度和色调,增强故障轮廓与背景的局部对比度;利用改进像素相关性分割算法分割图像特征,将图像中的仪表盘区域从复杂背景中提取出来;利用深度学习领域的深度卷积网络,对分割后的仪表盘图像进行故障轮廓检测;计算定位目标(故障轮廓)的质心坐标,将质心位置作为目标点,映射到构建的投影成像空间坐标系中实现对仪表盘显示故障区域的高精度定位;实验结果表明:应用该方法后,故障区域与周围环境的对比度区分显著增强,具有较高的检测和定位精度。
Research on Visual Fault Detection and Location of Ventilation Machinery Instrument Panel in Complex Background Environment
Ventilation mechanical instrument panels often have the image features of inconsistent color,brightness,and texture changes due to shadows or partial occlusion in complex background environments,resulting in a contrast decrease between the faulty area and the surrounding environment,so it is difficult for manual methods to accurately locate the faulty area.To address these is-sues,a visual fault detection and localization method for ventilation machinery instrument panels is designed.Kinect cameras are used to extract ventilation mechanical instrument images and the histogram equalization is performed to adjust the brightness and hue of the image,enhancing the local contrast between the fault contour and the background.By using an improved pixel correlation segmenta-tion algorithm to segment the image features,the dashboard area in the image is extracted from complex backgrounds.Deep convolu-tion networks are used to detect the fault contour on segmented instrument panel images.the centroid coordinates of the positioning target(fault contour)is calculated,the centroid position is taken as the target point,and it is mapped to the constructed projection imaging spatial coordinate system,which achieves the high-precision positioning of displaying the fault area on the dashboard.The ex-perimental results show that after applying this method,the contrast distinction has a significant enhancement between the fault area and the surrounding environment,with a high detection and positioning accuracy.

machine visionventilation mechanical instrument panelimage enhancementimage segmentationdeep convolution network

周晟刚

展开 >

安徽省煤炭科学研究院,合肥 230001

机器视觉 通风机械仪表盘 图像增强 图像分割 深度卷积网络

安徽省高等学校科研院所省级项目

S202204s03020015

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(3)
  • 20