计算机测量与控制2024,Vol.32Issue(3) :112-117.DOI:10.16526/j.cnki.11-4762/tp.2024.03.017

基于监控视频流的手持探针探测位置检测算法的设计

Design for Position Detection Algorithm of Hand-Held Probe Based on Video Surveillance

张建鹏 徐云 杨承翰 林奇洲
计算机测量与控制2024,Vol.32Issue(3) :112-117.DOI:10.16526/j.cnki.11-4762/tp.2024.03.017

基于监控视频流的手持探针探测位置检测算法的设计

Design for Position Detection Algorithm of Hand-Held Probe Based on Video Surveillance

张建鹏 1徐云 1杨承翰 1林奇洲2
扫码查看

作者信息

  • 1. 浙江理工大学信息科学与工程学院,杭州 310018
  • 2. 浙江理工大学机械工程学院,杭州 310018
  • 折叠

摘要

针对监控视频流开展生产流程的有效性检测,存在计算量大、耗时长等问题;根据采集的手持探针探测的视频流图像,构建数据集,训练人工手持探针的探测模型;采用KNN算法分析前后帧的监控视频流,实现视频流图像前景和背景的分离;利用人工手持探针模型实时提取监控视频中的探针,获得手持探针的前景图像;提出基于像素搜索的手持探针的位置探测算法实现视频图像中人工手持探针探测位置的点推算,并对比理论应检测的真实位置,从而判断手持探针检测的有效性;工厂监控视频流实际测试结果表明,设计的基于监控视频流的手持探针探测位置检测算法的平均准确率约93.26%,召回率约81.11%,F1值约86.76%,检测速度约9.66 fps/s,能够实现工厂监控视频流中人工手持探针的有效性检测.

Abstract

Aiming at the problem of large calculation and long time consumption for the validity detection for the production process of video surveillance.The dataset is established based on the collected detection video surveillance images for the hand-held probe,and the detection model for the hand-held probe is trained;The K-Nearest-Neighbors(KNN)algorithm is applied to analyze the continuous frames of the video surveillance and separate the foreground and background for the video frame,the artificial handheld probe model is used to extract the probe from surveillance videos in real time,and then the foreground image of the hand-held probe can be obtained;Based on the foreground image of the hand-held probe,the algorithm based on the pixel search is proposed to calcu-late the detection position of the hand-held probe.Then,compared with the actual position need to be theoretically detected for the probe,the validity for detection of the hand-held probe will be evaluated.The experiment is carried out in the factory surveillance vid-eo,and the results show that the average accuracy for the validity detection of the hand-held probe in the video surveillance is about 93.26%,the recall rate is about 81.11%,and the F1 score is about 86.76%with the detection speed of 9.66 fps/s,which achieves the validity detection of the hand-held probe in the factory surveillance video.

关键词

背景分离/探针检测/KNN算法/机器视觉/有效性检测

Key words

background separation/probe detection/KNN algorithm/machine vision/validity detection

引用本文复制引用

基金项目

国家自然科学基金(62203393)

浙江省自然科学基金(LQ20F030019)

出版年

2024
计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
参考文献量21
段落导航相关论文