首页|基于强化学习算法的神经网络模糊测试技术优化研究

基于强化学习算法的神经网络模糊测试技术优化研究

扫码查看
现有神经网络模糊测试技术在测试样本生成阶段通常对初始样本进行随机变异,导致生成样本质量不高,从而测试覆盖率不高;针对以上问题,提出一种基于强化学习算法的神经网络模糊测试技术,将模糊测试过程建模为马尔可夫决策过程,在该模型中,测试样本被看作环境状态,不同的变异方法被看作可供选择的动作空间,神经元覆盖率被看作奖励反馈,使用强化学习算法来学习最优的变异策略,指导生成最优测试样本,使其能够获得最高的神经元覆盖率;通过与现有的主流神经网络模糊测试方法的对比实验表明,基于强化学习算法的神经网络模糊测试技术,可以提升在不同粒度下的神经元覆盖。
Research on Neural Network Fuzzy Testing Method Based on Reinforcement Learning Algorithm
Existing neural network fuzzy testing techniques usually adopt random mutations to initial samples during the test sam-ple generation phase,resulting in the low quality of generated samples and testing coverage.To address these issues,a neural net-work fuzzy testing technique based on reinforcement learning algorithm is proposed.Taking the fuzzy testing process as a Markov de-cision process,testing samples are regarded as environmental states in the model,different mutation methods as selected action space,and neuron coverage serves as a reward feedback,reinforcement learning algorithms are used to learn optimal mutation strategy,guid-ing the generation of optimal test samples to achieve the highest neuron coverage.Compared with the experiments for mainstream neural network fuzzy testing methods,the results show that the neural network fuzz testing technique based on reinforcement learning algorithm can improve the neuron coverage of different granularities.

fuzzy testneural networkreinforcement learningMarkov decision processreward function

张宇豪、关昕

展开 >

华北计算技术研究所,北京 100083

模糊测试 神经网络 强化学习 马尔科夫决策过程 奖励函数

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(3)
  • 27