首页|基于轻量级金字塔网络的种子分选方法研究

基于轻量级金字塔网络的种子分选方法研究

扫码查看
针对目前卷积神经网络种子分选方法存在识别精度不高、模型参数量大、推理速度慢且难于部署等问题,提出了基于轻量级金字塔空洞卷积网络的种子分选方法;该网络提出了残差空间金字塔模块,利用不同扩张率的空洞卷积扩大感受野,更有效地提取多尺度特征;再结合深度可分离卷积技术减少模型参数量和计算复杂度;在网络结构中引入轻量级注意力机制模块,利用局部跨通道交互方式关注重要的信息,提高种子关键特征提取能力;实验结果表明,提出网络参数量仅为0。13 M,在玉米和红芸豆数据集上准确率高达96。00%和97。38%,在NVIDIA Quadro板卡上识别单张图片时间仅为4。51 ms,均优于主流轻量级网络MobileNetv2、Shufflenetv2和PPLC-Net等,可以满足工业现场实时识别的要求。
Research on Seed Sorting Method Based on Lightweight Pyramidal Network
To address the problems of low recognition accuracy,large number of model parameters,slow inference speed and dif-ficult deployment in current convolutional neural network seed sorting methods,a seed sorting method based on lightweight pyramidal dilated convolutional network is proposed.A residual spatial pyramid module is proposed to expand the perceptual field by using the convolution of dilated with different expansion rates,to effectively extract the multi-scale features.Then,deep-wise separable convo-lution techniques are used to reduce the model parameters and the computational complexity.A lightweight attention mechanism mod-ule is introduced into the network structure to improve the extraction of seed key feature,the local cross-channel interactions are a-dopted to focus on the important information.The experimental results show that the parameter quantity of the proposed network is only 0.13 M,with a accuracy on corn dataset and red kidney bean dataset of 96.00%and 97.38%,and the average time of 4.51 ms to recognize single image on NVIDIA Quadro board,the recognition time on the NVIDIA Quadro board is better than that of the ma-instream lightweight networks,such as MobileNetv2,Shufflenetv2 and PPLC-Net,etc.,which can meet the requirements of real-time recognition in industrial sites.

seed sortinglightweight networksECA attention mechanismdepth-wise separable convolutiondilated convolution

李卫杰、桑肖婷、李环宇、魏平俊、李骁

展开 >

中原工学院电子信息学院,郑州 450007

中国石油大学(华东)海洋与空间信息学院,山东青岛 266580

种子分选 轻量化网络 ECA注意力机制 深度可分离卷积 空洞卷积

国家自然科学基金国家自然科学基金河南省教育厅科技创新团队项目

U18041576207248921IRTSTHN013

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(3)
  • 33