首页|基于双目视觉的水下动态目标识别与定位方法研究

基于双目视觉的水下动态目标识别与定位方法研究

扫码查看
针对动态水下目标跟踪定位过程需要良好的实时性与鲁棒性问题,提出一种基于双目视觉的水下动态目标定位方法;利用快速引导滤波提取水下图像的光照分量,构造了一种改进的二维伽马函数,并对其参数利用光照分量的分布特性进行调整,实现了对水下不同环境图像下的亮度自适应校正处理;利用卡尔曼滤波预估下一时刻目标的位置,将预测空间作为ROI区域进行图像校正,极大降低了算法的运行时间;在HSV空间对目标进行掩膜提取,识别之后通过双目定位算法对目标进行准确定位;经过水箱试验验证,与多尺度高斯函数、双边滤波等算法相比,该方法在运行速度上有着显著的提高,达到了 35FPS,在定位过程中有着较高定位精度,在方向的平均相对误差为(3。59%,3。35%,1。42%);结果表明,该算法可以满足水下动态目标跟踪定位的实时性与鲁棒性要求。
Research on Underwater Dynamic Target Recognition and Location Method Based on Binocular Vision
Aiming at the problem that the dynamic underwater target tracking and positioning process requires good real-time and robustness,an underwater dynamic target positioning method based on binocular vision is proposed.Fast guided filtering is used to extract the illumination component of underwater images,build the improved two-dimensional Gamma function,adjust its parameters by using the distribution characteristics of illumination components,and realize the adaptive image brightness correction under differ-ent underwater environments.Kalman filter is used to estimate the position of the target at the next moment,and taking the predic-tion space as the ROI region for image correction,it greatly reduces the running time of the algorithm.The target is masked in the HSV space,and it is accurately located by the binocular localization algorithm after recognition.Through the water tank testing,compared with multi-scale Gaussian function,bilateral filtering and other algorithms,the proposed method has a significant improve-ment in running speed,reaching 35 FPS,and it has a high positioning accuracy during the positioning process,with the average rela-tive errors of 3.59%,3.35%,1.42%in the X,Y and Z directions.The results show that the algorithm can meet the real-time and robustness requirements in underwater dynamic target tracking and positioning.

image enhancementtwo-dimensional Gamma functionfast guided image filterKalman filterbinocular vision

柳靖彬、刘卫东、李乐、张帅军、张文博、李艳丽

展开 >

西北工业大学航海学院,西安 710072

图像增强 二维伽马函数 快速引导滤波 卡尔曼滤波 双目视觉

国家自然科学基金中央高校基本科研业务费专项高等学校学科创新引智计划(111计划)

619033043102020HHZY030010B18041.0

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(3)
  • 20