首页|基于迁移QCNN的孪生网络轴承故障诊断方法

基于迁移QCNN的孪生网络轴承故障诊断方法

扫码查看
轴承故障诊断对于降低旋转机械的损坏风险,进一步提高经济效益具有重要意义;深度学习在轴承故障诊断中应用广泛,但是深度学习模型在训练与测试时容易受到噪声的干扰导致性能下降;并且轴承的工况变化频繁,不同工况下的数据采集困难;对此,提出了一种基于迁移QCNN的孪生网络轴承故障诊断方法,先预训练QCNN获取具有较强判别性的模型参数,将预训练的参数迁移到QCNN作为子网络的孪生网络中,然后正常训练孪生网络获取模型,最后将测试数据与故障数据组成数据对输入模型,即可得到测试数据的故障类型;该方法将QCNN与孪生网络相结合,QCNN中的Quadratic神经元具有强大的特征提取能力,孪生网络共享权重和相对关系的训练方式,使得模型可以缓解噪声和工况数据不平衡问题的影响;实验结果显示,相较与传统机器学习模型和QCNN等模型,所提出方法在面对噪声和工况数据不平衡问题表现更好。
Twin Network-based Bearing Fault Diagnosis Method Based on Transfer QCNN
It is of great significance for bearing fault diagnosis to reduce the risk of damage in rotating machinery and further im-prove economic benefits.Deep learning is widely used in bearing fault diagnosis,but deep learning models are prone to noise interfer-ence during training and testing,leading to performance degradation.Moreover,because the operating conditions of bearings change frequently,it is difficult to collect the data in different conditions.To address this issue,a bearing fault diagnosis method based on transfer quadratic convolutional neural network(QCNN)and Siamese network is proposed.Firstly,the QCNN is pre-trained to ob-tain the parameters of the model with strong discrimination.Then,the pre-trained parameters are transferred to the QCNN as a sub-network in the Siamese network.And then,the Siamese network is trained to obtain the model.Finally,the test data and fault data are combined to form the input of data pairs to the model,which obtains the fault type of the test data.This method combines the QCNN with the Siamese network,where the quadratic neurons of the QCNN have powerful feature extraction capabilities,and the Si-amese network is trained with the shared weights and relative relationships,which alleviates the impact of noise and the data of imbal-anced operating conditions.Experimental results show that compared to the traditional machine learning models and QCNN,the pro-posed method has a better performance in dealing with noise and imbalanced operating condition data.

transferQCNNSiamese networkquadratic neuronfault diagnosis

王军、张维通、闫正兵、朱志亮

展开 >

温州大学电气数字化设计技术国家地方联合工程研究中心,浙江温州 325035

迁移 QCNN 孪生网络 Quadratic神经元 故障诊断

温州市科研项目工业控制技术国家重点实验室开放基金

ZF2022003ICT2022B65

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(4)
  • 27