首页|基于机器视觉转子冲片亚像素精度尺寸测量研究

基于机器视觉转子冲片亚像素精度尺寸测量研究

扫码查看
针对传统冲压件人工尺寸测量效率低、精度难以保证等问题,提出一种基于机器视觉的转子冲片亚像素精度尺寸测量方法;该方法采用先将采集的冲片图像灰度化再应用中值滤波来降低噪声干扰的图像预处理方法;通过Canny算子与Otsu方法相结合实现自适应阈值边缘检测,再利用改进的Zernike矩方法进行亚像素定位,获取亚像素级坐标;然后设计轮廓分割算法,主要提取内外圆亚像素轮廓,同时设置感兴趣区域并基于K-Means聚类算法分割出骨架线段轮廓,最后使用最小二乘拟合法求解出转子冲片内外圆直径和骨架间距尺寸;实验结果表明,该方法平均测量精度可以达到0。01 mm,测量精度高、速度较快,具有较高的实用价值。
Research on Sub-pixel Precision Dimension Measurement of Rotor Punching Based on Machine Vision
Aiming at the low efficiency and difficulty of traditional manual dimension measurement for stamped parts,a sub-pixel precision dimension measurement method for rotor punching based on machine vision is proposed.Firstly,this method is used to gray the collected image,and then the median filter is applied to reduce the noise interference.The adaptive threshold edge detection is re-alized through the combination of the Canny operator and Otsu method,and the improved Zernike moment method is used for the sub-pixel positioning to obtain the sub-pixel coordinates.Then,the contour segmentation algorithm is designed to mainly extract the sub-pixel contour of the inner and outer circles.At the same time,the interesting region is arranged to segment the outline of the frame-work line segment based on the K-Means clustering algorithm.Finally,the least squares fitting method is used to solve the diameter of inner and outer circles of the rotor punching and the framework interval size.The experimental results show that the measurement accuracy of this method can reach 0.01 mm,and it has the high measurement accuracy and rapid speed and high practical value.

machine visionrotor punchingsub-pixelK-Means clusteringdimension measurement

顾良玉、吴继薇

展开 >

南京理工大学 机械工程学院,南京 210094

南京工程学院人工智能产业技术研究院,南京 211167

机器视觉 转子冲片 亚像素 K-Means聚类 尺寸测量

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(4)
  • 23