首页|基于FA-A*优化算法的实验样品配送机器人控制系统设计

基于FA-A*优化算法的实验样品配送机器人控制系统设计

扫码查看
为保证配送机器人能够安全稳定地将实验样品送至指定位置,利用FA-A*优化算法,从硬件和软件两个方面优化设计实验样品配送机器人控制系统;改装配送机器人位姿传感器、数据处理器、电机驱动器和控制器等设备元件,调整系统电路的连接方式,完成硬件系统的优化;采用栅格法搭建配送机器人移动环境模型,通过图像采集、特征提取与特征匹配等环节,识别实验样品配送对象的具体位置;以实验样品当前位置为起点、配送终端位置为终点,利用FA-A*优化算法规划机器人配送路径,结合机器人实时位姿的跟踪结果,计算机器人控制量,最终从位置/速度、平衡、自主搭乘电梯等方面,实现配送机器人的控制功能;通过系统测试实验得出结论:综合静态障碍物和动态障碍物两个实验场景,与传统控制相比,在优化设计系统控制下,配送机器人的位置和速度控制误差分别降低约14 m和0。38 m/s。
Control System Design for Experimental Sample Delivery Robots Based on FA-A* Optimization Algorithm
In order to ensure that the delivery robot can safely and stably deliver the experimental samples to the postion,the FA-A*optimization algorithm is used to improve the control system of the experimental sample delivery robot from both hardware and software.Modify the posture sensor,data processor,motor driver and controller of the delivery robot,adjust the connection mode of the system circuit,and complete the optimization of the hardware system.The grid method is used to build the mobile environment model of the delivery robot,and the specific position of the experimental sample delivery object is identified through the image acquisi-tion,feature extraction and feature matching.With the current position of the experimental sample as a starting point and the position of the distribution terminal as an end point,the FA-A*optimization algorithm was adopted to plan the robot distribution path,and combined with the tracking results of the real-time pose and posture of the robot,the robot control value was calculated.Finally,the control function of the distribution robot was realized from the aspects of position or speed,balance,and taking the elevator independ-ently.Through the system test experiment,The results show that compared with the traditional control scenarios of static and dy-namic obstacles,the position and speed control errors of the optimized system for the distribution robot are reduced by about 14 m and 0.38 m/s,respectively.

FA-A* optimization algorithmexperimental samplesdelivery robotscontrol system

钟昊、丁仲熙

展开 >

长沙海关技术中心,长沙 410004

西北工业大学 明德学院,西安 710124

FA-A*优化算法 实验样品 配送机器人 控制系统

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(4)
  • 20