计算机测量与控制2024,Vol.32Issue(4) :143-150.DOI:10.16526/j.cnki.11-4762/tp.2024.04.021

基于样本扩充网络的水声目标分类模型优化算法

Optimization Method of Underwater Acoustic Target Classification Model Based on Sample Expansion Network

张博轩 赵天白 常振兴 蒋翔宇 王少博
计算机测量与控制2024,Vol.32Issue(4) :143-150.DOI:10.16526/j.cnki.11-4762/tp.2024.04.021

基于样本扩充网络的水声目标分类模型优化算法

Optimization Method of Underwater Acoustic Target Classification Model Based on Sample Expansion Network

张博轩 1赵天白 1常振兴 2蒋翔宇 3王少博1
扫码查看

作者信息

  • 1. 中国电子科技集团公司第54研究所,石家庄 050081
  • 2. 国网电力空间技术有限公司,北京 102213
  • 3. 电子科技大学信息与通信工程学院,成都 610731
  • 折叠

摘要

水声目标识别是近年来各国的研发热点,但是由于水声目标难以采集而导致样本数据不足,严重影响了神经网络的识别效率以及自动化识别装备的水平和性能的发挥;为此,提出了一种基于样本扩充网络的水声目标分类模型优化方法,通过搭建掩模重建的样本扩充网络,充分利用无标注数据进行训练,使模型学习到样本的全局高维特征,再生成样本加入后续的识别模型训练中,在两次试验过程中,平均识别准确率从76%提升至80%,最佳识别准确率从88%提升至96%;基于实测数据的实验表明,该方法提升了分类器的准确率、收敛速度以及稳定性.

Abstract

Underwater acoustic target recognition is a research and development hot spot in many countries in recent years.How-ever,it is difficult to collect underwater acoustic targets,resulting in the sample data insufficient,which seriously affects the recogni-tion efficiency of neural network and the level and performance of automatic recognition equipment.Therefore,an optimization meth-od of underwater acoustic target classification model based on the sample expansion network is proposed.Through building the sample expansion network reconstructed by the mask,the unlabeled data is fully utilized to train the model,learn the global high-dimensional features of the samples,and then generate the samples to be added to the subsequent recognition model training.Based on the results of two experiments,the average accuracy of target classification model improves from 76%to 80%,with its maximum accuracy im-proving from 88%to 96%.Experimental results show that this method improves the accuracy,convergence speed and stability of the classifier.

关键词

水声目标识别/样本扩充网络/循环对抗生成网络/掩码训练/梅尔倒谱系数

Key words

underwater acoustic target recognition/sample expansion network/cycle generative adversarial networks/mask training/mel-scale frequency cepstral coefficients

引用本文复制引用

基金项目

国家自然科学基金(U20B2071)

出版年

2024
计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
参考文献量20
段落导航相关论文