首页|一种弱纹理目标立体匹配网络

一种弱纹理目标立体匹配网络

扫码查看
现有深度估计方法在高分辨率图像下存在特征提取不够充分、局部信息特征提取差的问题,为此提出一种面向全局特征的Transformer立体匹配网络;该网络采用编码器-解码器的端到端架构,采用多头注意力机制,允许模型在不同子空间中关注不同特征,从而提高特征提取能力;模型将自注意力机制和特征重构窗口结合,能够提高特征的表征能力,弥补局部特征不足的问题,在减少计算负担的同时有效解决Transformer架构计算复杂度高的问题,将模型的计算复杂度保持在线性范围内;在Scene Flow、KITTI-2015数据集上分别进行实验,与现有方法相比,相关指标得到显著提升,验证了模型的有效性和实用性。
A Stereo Matching Network for Weak Texture Objects
Existing depth estimations have the problems of insufficient feature extraction and poor local feature extraction in high-resolution images.Therefore,a Transformer stereo matching network oriented to global features is proposed.The network adopts an encoder-decoder with end-to-end architecture and multi-head attention mechanism,which allows the model to pay attention to different features in different subspaces,thus improving the feature extraction ability.By combining the self-attention mechanism with the fea-ture reconstruction window,the model can improve the representation ability of features to compensate for the shortage of local fea-tures,and effectively solve the high computational complexity of Transformer architecture,so that the computational complexity of the model is maintained within a linear range.Experiments on the Scene Flow and KITTI-2015 data sets show that compared with the existing methods,the relevant indicators are significantly improved,which verifies the effectiveness and practicability of the model.

depth estimationencoder-decoderself attention mechanismfeature reconstruction windowglobal context information

刘泽、姜永利、丁志伟、刘永强

展开 >

国能宝日希勒能源有限公司,内蒙古呼伦贝尔 021500

深度估计 编码器-解码器 自注意力机制 特征重构窗口 全局上下文信息

国家自然科学基金

61601213

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(4)
  • 21