首页|基于CEEMD-VMD-SIST算法的sEMG信号降噪方法

基于CEEMD-VMD-SIST算法的sEMG信号降噪方法

扫码查看
针对基于表面肌电信号(sEMG)的手势识别中,由于传统降噪算法对sEMG信号高频部分分解不当或存在频率混叠现象使得对含噪sEMG信号降噪效果不佳而导致手势识别精度大大降低的问题,提出使用基于互补集合经验模态分解(CEEMD)与变分模态分解(VMD)组合的滑动区间软阈值(SIST)降噪算法(CEEMD-VMD-SIST)对含噪sEMG信号进行降噪处理;使用CEEMD将含噪信号分解为从高频到低频的多个不同本征模态函数(IMF),根据自相关系数客观界定后续降噪模态分量范围,对选中的模态分量采用VMD的SIST方法进行分解降噪并与部分剩余模态分量进行重构;从实验结果中可以看出,在不同信噪比下,所提算法的降噪性能与传统降噪方法相比,信噪比与均方根误差均有明显改善,可以更大程度上保留信号的有用信息,即所提算法的降噪性能更佳。
Denoising Method for sEMG Signal Based on CEEMD-VMD-SIST Algorithm
For gesture recognition based on surface electromyography(sEMG)signals,the sEMG signals have poor denoising characteristics such as improper decomposition of high-frequency parts or frequency aliasing in traditional denoising methods,resulting in a significant decrease in the gesture recognition accuracy,a sliding interval soft threshold(SIST)denoising algorithm based on com-plementary ensemble empirical mode decomposition and variational mode decomposition(CEEMD-VMD-SIST)is proposed for denois-ing the sEMG signals.The noisy signal is decomposed into multiple intrinsic mode functions(IMF)from high frequency to low fre-quency by using the CEEMD,and the modal component range of the signal is objectively determined according to the autocorrelation coefficients,the selected components are decomposed and denoised by the VMD-SIST and reconstructed with some remaining modal components.Experimental results show that compared with the traditional denoising methods and under different signal-to-noise ratios(SNR),the proposed algorithm significantly improves the denoising performances of SNR and root mean square error(RMSE),and preserves the useful components of signals to a large extent,the proposed algorithm has a better noise reduction performance.

sEMGCEEMDVMDautocorrelation coefficientCEEMD-VMD-SIST

李效、张明、张倩、叶轩

展开 >

武汉纺织大学电子与电气工程学院,武汉 430000

sEMG 互补集合经验模态分解 变分模态分解 自相关系数 CEEMD-VMD-SIST

国家自然科学基金

51477124

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(4)
  • 20