首页|基于注意力门UNet网络的CT金属伪影去除方法

基于注意力门UNet网络的CT金属伪影去除方法

扫码查看
目前,UNet基本模型对带有金属伪影的CT图像的去除能力无法有效满足需求,UNet的结构简单无法提取出足够精确的有效结构和细节信息,并且深层卷积对低级特征的信息利用不够充分;针对上述问题,提出了一个基于注意力门的UNet金属伪影去除网络,该网络采用了注意力门对低层级和高层级的信息进行注意力权重处理,并利用跳跃连接机制到特征解码结构以提高生成CT图像的质量,通过多层级的编解码结构得到最终的去除金属伪影CT图像;实验结果表明,该方法在视觉上取得了更好的条状和带状伪影去除效果的CT图像,并在PSNR指标上取得了35。5913,在FSIM指标上取得了0。9613,在SSIM指标上取得了0。928 8的成绩;与ADN、cGANMAR、UNet、CNNMAR、CycleGAN等目前已有的方法相比,该方法在诸多方面均取得了显著的优势。
Metal Artifact Reduction for CT Method Based on Attention Gate UNet
Currently,the basic UNet model cannot effectively meet the demand for CT images with metal artifact reduction,the simple structure of the UNet cannot precisely extract the accurate information on the effective structure and details,and deep convolu-tional neural network does not sufficiently use the information of low-level features.Based on the above problems,a metal artifact re-moval network with attention gates based on the UNet is proposed.The network adopts the attention gates to process the attention weights of the information at low and high levels,The jump connection mechanism and feature decoding structure are used to improve the quality of the generated CT images,the final CT images with metal artifact reduction are obtained through the multilevel encoding and decoding structure.The experimental results show that the proposed method achieves better visual effects in removing stripe and banding artifacts in CT images,with a PSNR of 35.591 3,FSIM of 0.961 3,and SSIM of 0.928 8.Compared to existing methods such as the ADN,cGANMAR,UNet,CNNMAR,and CycleGAN,the proposed method has significant advantages in multiple aspects.

metal artifact reductionattention mechanismconvolutional neural networkUNetencoder-decoder

师晓宇、王斌

展开 >

中北大学 信息与通信工程学院,太原 030051

金属伪影去除 注意力机制 卷积神经网络 UNet 编解码

山西省基础研究计划山西省基础研究计划山西省专利转化专项

202203021211100202103021224204202302006

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(4)
  • 26