计算机测量与控制2024,Vol.32Issue(5) :38-45.DOI:10.16526/j.cnki.11-4762/tp.2024.05.006

基于改进YOLOv8的隧道火灾检测研究

Research on Tunnel Fire Detection Based on Improved YOLOv8

闵浩 屈八一 谢子豪
计算机测量与控制2024,Vol.32Issue(5) :38-45.DOI:10.16526/j.cnki.11-4762/tp.2024.05.006

基于改进YOLOv8的隧道火灾检测研究

Research on Tunnel Fire Detection Based on Improved YOLOv8

闵浩 1屈八一 1谢子豪1
扫码查看

作者信息

  • 1. 长安大学信息工程学院,西安 710064
  • 折叠

摘要

隧道内火灾检测存在检测困难和难以直接部署到资源有限的嵌入式设备进行实时检测的问题,提出一种基于改进YOLOv8的隧道火灾检测算法;首先引入极化注意力保持高分辨率信息来抑制冗余特征,同时增强全局信息的捕捉;其次引入了一种新的局部卷积PConv来实现低延迟和高吞吐量的模型;最后使用WIoU函数优化网络的边界框损失,使网络能够快速收敛.实验结果表明,该网络在所使用隧道火灾数据集上的平均精度mAP提升了 1.3%,同时轻量化后模型参数减少了 29.7个百分点,向前推理时间降低了 44%;算法能够平衡精度和轻量化的需求,可以满足隧道场景下的实时检测.

Abstract

There are the difficulties of detecting fires inside tunnels and directly deploying to the embedded devices with limited resources for real-time detection,a tunnel fire detection algorithm based on improved YOLOv8 is proposed.Firstly,the polarized at-tention mechanism is introduced to preserve high-resolution information and suppress redundant features,while enhancing the capture of global information.Secondly,the novel partial Convolution(PConv)is introduced to achieve the model with low latency and high throughput.Finally,the WIoU function is used to optimize the loss of network bounding box,enabling the fast convergence of the network.Experimental results demonstrate that on the utilized tunnel fire dataset,the mean average precision(mPA)of the proposed network improves by 1.3%.Furthermore,the model parameters of the lightweight model reduces by 29.7%,and the forward infer-ence time by 44%.The algorithm meets the requirements of accuracy and lightweight,making it suitable for real-time detection in tunnel scenarios.

关键词

YOLOv8/局部卷积/WIoU/极化注意力/轻量化

Key words

YOLOv8/partial convolution/WIoU/polarized attention/lightweight

引用本文复制引用

出版年

2024
计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
段落导航相关论文