首页|结合小波变换与改进SSA优化小波神经网络的电力负荷预测

结合小波变换与改进SSA优化小波神经网络的电力负荷预测

扫码查看
电力负荷预测是输电网络扩展和规划及合理电力调度的关键手段;针对电力负荷时间序列的非线性和复杂性特征,提出结合小波变换与改进麻雀搜索算法优化小波神经网络的电力负荷预测模型ISSA-WNN;设计改进麻雀搜索算法ISSA对小波神经网络的关键参数初值寻优,解决梯度调参易陷入局部最优的不足;对标准麻雀搜索算法SSA改进,引入Logistic-Tent混合混沌种群初始化、发现者/警戒者自适应更新、跟随者可变对数螺旋更新和高斯-柯西混合变异策略提升算法寻优能力;利用小波变换对电力负荷样本分解与重构,降低负荷时序的无序性和波动性,在此基础上构建新的电力负荷预测模型ISSA-WNN;实验结果表明,与标准小波神经网络模型WNN和标准麻雀搜索算法优化小波神经网络模型ISSA-WNN相比,预测模型ISSA-WNN的平均绝对百分比误差和均方根误差指标值平均可以降低18。42%和21。21%,其拟合能力更强,预测性能更加稳定。
Combining Wavelet Transformed and Improved SSA Optimizing Wavelet Neural Network for Power Load Prediction
Power load forecasting is a key means for transmission network expansion,planning and reasonable power dispatch.Aimed at the nonlinear and complex characteristics of power load time series,a power load prediction model for combing improved sparrow search algorithm and wavelet neural network(ISSA-WNN)is proposed to optimize wavelet neural network.The improved sparrow search algorithm is designed to optimize the initial value of the key parameters of the wavelet neural network,which can ef-fectively solve the problem that it is easy for the gradient parameter adjustment to fall into the shortage of local optimum.The Logis-tic-Tent hybrid chaotic population initialization,discoverer or watcher adaptive update,follower variable logarithm spiral update and Gauss-Cauchy hybrid mutation strategy are introduced to improve the optimization ability of the standard sparrow search algorithm.The wavelet transform is used to decompose and reconstruct the power load sample to reduce the disorder and volatility of the load time sequence.On this basis,a new power load prediction model ISSA-WNN is constructed.The experimental results show that com-pared with the standard WNN model and optimizing SSA-WNN model,the average absolute percentage error and root mean square er-ror index values of the prediction model ISSA-WNN are averagely reduced by 18.42%and 21.21%,respectinely,with a stronger fit-ting ability and more stable prediction performance.

power load predictionWNNwavelet transformSSAGaussian-Cauchy mutation

向东、赵文博、王玖斌、邓岳辉、张伟、石灿、陈柄宏

展开 >

华能重庆两江燃机发电有限责任公司,重庆 400799

华能重庆分公司,重庆 401120

北京中电方大科技有限公司,北京 100095

电力负荷预测 小波神经网络 小波变换 麻雀搜索算法 高斯-柯西变异

四川省教育厅科技项目

20213967

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(5)