首页|注意力残差块引导的师生网络色织物缺陷检测算法

注意力残差块引导的师生网络色织物缺陷检测算法

扫码查看
针对传统色织物缺陷检测重构模型存在难以保证缺陷区域的重构效果、漏检和误检率偏高等问题,提出一种注意力残差块引导的无监督师生网络色织物缺陷检测算法;从知识蒸馏角度出发,基于Wide_Resnet50_2网络设计一种具有编码-解码结构的教师-学生模型,学生网络通过恢复经过预训练的教师网络的多尺度特征增强重构能力;提出一种融合双重注意力的残差模块DARM,对特征信息进行双重权重分配的方式可以去除教师网络输出的冗余信息,进一步扩大师生网络之间对于缺陷区域的表征差异,提升模型的缺陷检测与定位能力;实验结果表明,提出的算法在YDFID-1数据集上AUPRO达到了 85.8%、像素级AUROC和图像级AUROC分别达到了 96.3%和98.3%;在少样本条件设置下,提出的算法在MVTec数据集上AUPRO和AUROC下降不超过4.5%,实验结果验证了该算法处理色织物缺陷检测问题的有效性以及稳定性.
Teacher-student Network Yarn-dyed Fabric Defect Detection Based on Attention Residual Block Guidance
Aiming at traditional yarn-dyed fabric defect detection reconstruction models,there are problems such as difficulty to ensure the reconstruction effect of defective regions,missed detection and high false detection rate,an unsupervised teacher-student network yarn-dyed fabric defect detection algorithm based on attention residual block guidance is proposed.Firstly,from the perspec-tive of knowledge distillation,a teacher-student model with encoding-decoding structure based on Wide_Resnet50_2 network is de-signed,and the student network enhances the reconstruction capability by recovering the multi-scale features of pre-trained teacher network.Secondly,a dual attention residual module(DARM)is proposed to incorporate the dual attention,remove the teacher net-work output redundant information in the dual weight assignment mode of feature information,further expand the representation differences of defective regions between the teacher-student networks,and improve the defect detection and localization ability of the model.The experimental results show that the AU PRO of the proposed algorithm reaches by 85.8%,the pixel-level AU ROC by 96.3%,and the image-level AU ROC by 98.3%on the YDFID-1 dataset,the AU PRO and AU ROC of the proposed algorithm de-crease by no more than 4.5%on the MV Tec dataset under few sample conditions,the experimental results verify that the algorithm has the effectiveness and stability of dealing with color fabric defect detection.

image processingyarn-dyed fabricfabric defect detectionattention mechanismknowledge distillation

张玥、刘帅波、张思怡、吴天禧

展开 >

西安工程大学电子信息学院,西安 710048

图像处理 色织物 缺陷检测 注意力机制 知识蒸馏

国家自然科学基金纺织工业联合会科技指导性项目西安工程大学研究生创新基金

618032922020111chx2023011

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(5)