首页|基于改进YOLOv5s的焦炉烟火识别算法

基于改进YOLOv5s的焦炉烟火识别算法

扫码查看
针对炼焦厂烟火排放全天候环保监测的要求,提出了基于改进YOLOv5s的焦炉烟火识别算法;该算法以YOLOv5s为基础网络,在主干网络Backbone中添加CBAM注意力机制模块,使网络更加关注重要的特征,提升目标检测的准确率;新增FReLU激活函数代替SiLU激活函数,提高激活空间的灵敏度,改善烟火图像视觉任务;在自建数据集中烟、火样本标签基础上,增加灯光标签来解决强灯光对火焰识别的干扰,并通过分流训练、检测的方式来解决昼夜场景的烟火检测问题;在自建数据集上做对比实验,更换激活函数后,联合CBAM模块的YOLOv5s模型效果最佳;实验结果显示,与原始YOLOv5s模型相比,在白天场景下的烟火识别mAP值提升了 6。7%,在夜间场景下的烟火识别mAP值高达97。4%。
Recognition Algorithm for Coke Oven Smoke and Fire Based on Improved YOLOv5s
For the requirements of all-weather environmental monitoring of smoke and fire emissions in coke plants,a coke oven smoke and fire recognition algorithm based on improved YOLOv5s is proposed;the algorithm uses YOLOv5s as the base network and adds the attention mechanism module of convolutional block attention module(CBAM)to the backbone network,it makes the net-work pay more attention to the important features and improve the detection accuracy of targets;a new Sigmoid weighted liner unit(FReLU)activation function replaces the funnel rectified linear unit(SiLU)activation function to improve the sensitivity of the acti-vation space and the smoke and fire image vision task;on the basis of smoke and fire sample labels in the self-built dataset,the light labels are added to solve the interference of strong lights on flame recognition,and the smoke and fire detection problem of day and night scenes is achieved by the shunting training and detection;Through the comparison experiments on the self-built dataset and re-placing the activation function,the experimental results for the joint CBAM module show that the mAP value of smoke and fire detec-tion in the day scene is improved by 6.7%than that of the original YOLOv5s model,and the mAP value of smoke and fire recognition in night scenes reaches 97.4%.

smoke and fire recognitionYOLOv5sattention mechanismactivation functiontarget detection

刘一铭、张运楚、周燕菲、张欣毅

展开 >

山东建筑大学信息与电气工程学院,济南 250101

山东省智能建筑技术重点实验室,济南 250101

烟火识别 YOLOv5s 注意力机制 激活函数 目标检测

国家自然科学基金

62003191

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(5)