首页|基于ISSA-LSTM的热舒适短期预测模型

基于ISSA-LSTM的热舒适短期预测模型

扫码查看
为解决在测试日内的短期预测过程中,农村城镇人体热舒适中建筑惰性及人员等随机因素使人体感受变化的样本对预测结果影响大而导致预测精准度低的问题,提出基于改进麻雀搜索算法(ISSA)优化长短期记忆神经网络(LSTM)的方法建立新型户用空调热舒适短期预测模型;首先,对测试日气象数据进行动态性分析,对数据进行有效性验证并构建多种热舒适预测模型;随后选用新型用户热舒适短期预测模型(ISSA-LSTM)对热舒适进行预测。结果表明,模型的最高预测均方误差(MSE)比麻雀搜索算法(SSA)和蜣螂优化算法(DBO)优化LSTM分别提高了 0。022 96和0。108 27,采用ISSA-LSTM方法后改善了短期热舒适预测的精度问题,并提高了分体式空调通过热舒适来控制温度的性能。
Short-term Prediction Model for Thermal Comfort Based on ISSA-LSTM
During short-term prediction on test days,to solve the influence of random factors such as building inertia and person-nel in human thermal comfort,resulting in the low prediction accuracy in rural and urban areas,an optimized long short-term memory neural network(LSTM)based on improvement sparrow search algorithm(ISSA)is proposed to build the novel short-term prediction model for the thermal comfort of residential air conditioners.Firstly,this paper analyzes the dynamic data of weather on test days,verifies the validity of the data,and constructs various thermal comfort prediction models;Then,the new household thermal comfort short-term prediction model(ISSA-LSTM)is selected to predict thermal comfort.The results show that compared with the sparrow search algorithm(SSA)and Dung beetle optimizer(DBO)optimized LSTM,the proposed method increases the highest prediction mean squared error(MSE)of 0.022 96 and 0.108 27,respectively.The ISSA-LSTM method is adopted to improve the accuracy of short-term thermal comfort prediction,and the performance of split air conditioners to control temperature through thermal comfort.

residential air conditionersthermal comfortISSAneural networkshort-term prediction

闫秀英、肖桂波、王鑫洋、吉星星

展开 >

西安建筑科技大学建筑设备科学与工程学院,西安 710055

户用空调 热舒适 改进麻雀搜索算法 神经网络 短期预测

陕西省自然科学基础研究计划陕西省建设厅科技发展计划

2022JM-2832020-K17

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(5)