计算机测量与控制2024,Vol.32Issue(5) :296-301.DOI:10.16526/j.cnki.11-4762/tp.2024.05.042

基于人机混合智能的协同作战研究

Research on Cooperative Combat Based on Man-machine Combination Intelligence

单时卓 裴天翼 刘泽轩
计算机测量与控制2024,Vol.32Issue(5) :296-301.DOI:10.16526/j.cnki.11-4762/tp.2024.05.042

基于人机混合智能的协同作战研究

Research on Cooperative Combat Based on Man-machine Combination Intelligence

单时卓 1裴天翼 2刘泽轩2
扫码查看

作者信息

  • 1. 中国人民解放军92941部队,辽宁葫芦岛 125001
  • 2. 北京电子工程总体研究所,北京 100854
  • 折叠

摘要

体系作战是未来海上战争的主要模式,兵力协同是面向体系作战的具体手段;人机混合智能技术将人类智能和机器智能有机地结合起来,充分发挥人类和机器各自的智能优势,以提高系统整体的性能和效率,完成对海上协同作战任务的混合决策与作战;文章对现有人机混合智能决策作战的研究方法进行了论述和对比分析,并针对海战场协同作战决策系统,分析了不同模式的人机混合智能技术在海上协同作战方面的应用;在此基础上,提出了一种系统的人机混合智能协同作战方法,能够提高决策效率、增强态势感知能力和优化资源分配,为后续深入研究和完善海上智能协同作战提供了理论基础.

Abstract

Combat system is the main mode of the navel warfare in the future,weaponry corporation is a specific method for the combat system.Man-machine combination intelligent technology combines human intelligence and artificial intelligence organically,fully displays the intelligence advantages of humans and machines,improves the performance and efficiency of the whole system,com-pletes the hybrid decisions and operations for cooperative combat mission of the navel warfare.This paper covers the treatment and comparative analysis of the existing research on man-machine combination intelligent decisions in the navel warfare,and analyzes the applications of different man-machine combination intelligent modes for the navel warfare cooperative combat decision system.On this basis,a systemic man-machine combination intelligent method for cooperative combat is proposed,improving the decision-making effi-ciency and the perception of operational situation and optimal resource allocation.It provides a theoretical basis on intensive study and integrity for navel man-machine combination intelligent cooperative combat.

关键词

人机混合/协同作战/智能决策/深度学习

Key words

man-machine combination/cooperative combat/hybrid decisions/deep learning

引用本文复制引用

出版年

2024
计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
段落导航相关论文