首页|基于改进ABC-RBF的飞机全电刹车系统智能故障诊断

基于改进ABC-RBF的飞机全电刹车系统智能故障诊断

扫码查看
由于现有的故障诊断方法存在诊断平均误差值较高、耗时较长的问题,为此设计了基于改进ABC-RBF神经网络的飞机全电刹车系统故障自动诊断方法;设计采用"USB接口+ARM+FPGA"的硬件架构方式和由上位机、信号衰减电路等构成的故障信号采集器,实施飞机全电刹车系统故障信号采集;设计基于互信息与变分模态分解(VMD)的信号降噪算法对采集到的信号实施降噪处理;采用改进后的ABC算法对RBF神经网络参数进行寻优,确保寻优参数的有效性;并引入模糊集合的概念来提高网络的性能,利用梯度下降法进行网络训练更新,降低诊断结果误差;由此将降噪信号输入,利用优化训练后的RBF神经网络实现飞机全电刹车系统的故障自动诊断;结果表明,该方法的偏离因子值最低达到0。08×10-3,3种故障的平均诊断迭代时间均较短,其中主起落架"走步"故障的平均诊断迭代时间最短。
Intelligent Fault Diagnosis on Aircraft Full Electric Braking System Based on Improved ABC-RBF
Due to the problems of high average diagnostic error and long time consumption in existing fault diagnosis methods,an automatic fault diagnosis method for aircraft full electric braking system based on improved artificial bee colony radial basis function(ABC-RBF)neural network is designed.The design adopts a hardware architecture of"USB interface+ARM+FPGA",the fault signal collector is composed of an upper computer,signal attenuation circuit,etc.,it achieves fault signal acquisition for the aircraft's full electric braking system.Based on mutual information and variational mode decomposition(VMD),a signal denoising algorithm is used to denoise the collected signals.Using the improved ABC algorithm to optimize the parameters of the RBF neural network,ensu-ring the effectiveness of the optimization parameters.And the fuzzy sets are introduced to improve the performance of the network,the gradient descent method is adopted to update network training,and reduce the errors of diagnostic results.From this,with the denoised signal input,the trained RBF neural network is optimized to achieve automatic fault diagnosis of the aircraft full electric bra-king system.The results indicate that the deviation factor value of this method reaches a minimum of 0.08 × 10-3.The average diag-nostic iteration time for the three types of faults is relatively short,among which the average diagnostic iteration time for the main landing gear"walking"fault is the shortest.

fault signal collectorsignal denoisingimproved ABC-RBF neural networkaircraft full electric braking systemfault diagnosis

吴鹏、张洋、罗守华

展开 >

信阳航空职业学院航空工程学院,河南 信阳 464000

故障信号采集器 信号降噪 改进ABC-RBF神经网络 飞机全电刹车系统 故障诊断

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(6)
  • 16