首页|基于改进YOLOv5的安全绳目标检测

基于改进YOLOv5的安全绳目标检测

扫码查看
在工业施工过程中,工人安全已成为一个日益重要的问题,佩戴安全绳等安全装备是保护工人在高处工作时生命安全的重要措施;在现代化生产施工过程中,通过使用监控摄像设备结合人工智能算法的方式来检测工人佩戴安全绳等设备越发普遍,但安全绳由于细长、形状多变以及环境变化等因素较为难以准确识别;为解决以上问题,并确保能够在不同环境下准确识别安全绳,现提出一种使用YOLOv5的目标检测算法,首先通过改进的FasterNet模块进行上下文信息提取,在Neck网络中使用改进的多维动态卷积保留更多特征信息,使用WIoU_Loss损失函数来提高定位精度,在训练过程中使用动态调整学习率的策略;实验结果表明,改进后的算法在降低计算复杂度的情况下提高了3。0%的检测精度,mAP@0。5提高了4。3%,经过在实际场景应用,满足项目对实时检测精度及速度的要求。
Safe Rope Target Detection Based on Improved YOLOv5
In the process of industrial construction,the safety of workers has become an increasingly important issue,wearing safety equipment such as safety rope is an important guarantee for the safety of workers during high-altitude operations.In the process of modern production and construction,surveillance camera equipment are widely used to detect workers wearing safety ropes and other equipment combined with artificial intelligence algorithm,but it is difficult for the safety rope to accurately identify due to factors such as slender,changeable shape and environmental changes.In order to solve the above problems and ensure that the safety rope can be accurately identified in different environments,an object detection algorithm based on YOLOv5 is proposed.Firstly,the improved FasterNet module is used to extract the context information,and the improved multidimensional dynamic convolution is used to preserve the more feature information in the Neck network.The WIoU_Loss loss function is used to improve the positioning accu-racy,and dynamically adjust the learning rate in the training process.Experimental results show that under reducing the computation-al complexity,the improved algorithm improves the detection accuracy by 3.0%,and mAP@0.5 by 4.3%.By the application in ac-tual scenarios,the proposed algorithm can meet the requirements of real-time detection accuracy and speed in the project.

safety rope target detectionYOLOv5FasterNetmultidimensional dynamic convolutionWIoU_Loss

王猛、高树静、张俊虎、李海涛

展开 >

青岛科技大学信息科学与技术学院,山东青岛 266061

安全绳目标检测 YOLOv5 FasterNet 多维动态卷积 WIoU_Loss

山东省重点研发计划青岛市海洋科技创新专项

2021SFGC070122-3-3-hygg-3-hy

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(6)
  • 8